Edge-state critical behavior of the integer quantum Hall transition

The integer quantum Hall effect features a paradigmatic quantum phase transition. Despite decades of work, experimental, numerical, and analytical studies have yet to agree on a unified understanding of the critical behavior. Based on a numerical Green function approach, we consider the quantum Hall...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. ST, Special topics Special topics, 2021-06, Vol.230 (4), p.1003-1007
Hauptverfasser: Puschmann, Martin, Cain, Philipp, Schreiber, Michael, Vojta, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The integer quantum Hall effect features a paradigmatic quantum phase transition. Despite decades of work, experimental, numerical, and analytical studies have yet to agree on a unified understanding of the critical behavior. Based on a numerical Green function approach, we consider the quantum Hall transition in a microscopic model of non-interacting disordered electrons on a simple square lattice. In a strip geometry, topologically induced edge states extend along the system rim and undergo localization–delocalization transitions as function of energy. We investigate the boundary critical behavior in the lowest Landau band and compare it with a recent tight-binding approach to the bulk critical behavior [Phys. Rev. B 99, 121301(R) (2019)] as well as other recent studies of the quantum Hall transition with both open and periodic boundary conditions.
ISSN:1951-6355
1951-6401
DOI:10.1140/epjs/s11734-021-00064-6