Isomonodromic deformations: Confluence, Reduction \(\&\) Quantisation
In this paper we study the isomonodromic deformations of systems of differential equations with poles of any order on the Riemann sphere as Hamiltonian flows on the product of co-adjoint orbits of the Takiff algebra (i.e. truncated current algebra). Our motivation is to produce confluent versions of...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-12 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Gaiur, Ilia Mazzocco, Marta Rubtsov, Vladimir |
description | In this paper we study the isomonodromic deformations of systems of differential equations with poles of any order on the Riemann sphere as Hamiltonian flows on the product of co-adjoint orbits of the Takiff algebra (i.e. truncated current algebra). Our motivation is to produce confluent versions of the celebrated Knizhnik--Zamolodchikov equations and explain how their quasiclassical solution can be expressed via the isomonodromic \(\tau\)-function. In order to achieve this, we study the confluence cascade of \(r+ 1\) simple poles to give rise to a singularity of arbitrary Poincaré rank \(r\) as a Poisson morphism and explicitly compute the isomonodromic Hamiltonians. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2545775927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2545775927</sourcerecordid><originalsourceid>FETCH-proquest_journals_25457759273</originalsourceid><addsrcrecordid>eNqNit0KgjAYQEcQJOU7DIIoSFjfXKtuxahLo0tBRCcouq_2uffvhx6gqwPnnAkLQMpddIgBZiwk6oQQsNeglAxYeiUc0GLtcGgrXpsG3VCOLVo68QRt03tjK7PlN1P76uN5vs5X-YZnvrRjS993waZN2ZMJf5yz5Tm9J5fo4fDpDY1Fh97ZdypAxUprdQQt_7tehMA64Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2545775927</pqid></control><display><type>article</type><title>Isomonodromic deformations: Confluence, Reduction \(\&\) Quantisation</title><source>Free E- Journals</source><creator>Gaiur, Ilia ; Mazzocco, Marta ; Rubtsov, Vladimir</creator><creatorcontrib>Gaiur, Ilia ; Mazzocco, Marta ; Rubtsov, Vladimir</creatorcontrib><description>In this paper we study the isomonodromic deformations of systems of differential equations with poles of any order on the Riemann sphere as Hamiltonian flows on the product of co-adjoint orbits of the Takiff algebra (i.e. truncated current algebra). Our motivation is to produce confluent versions of the celebrated Knizhnik--Zamolodchikov equations and explain how their quasiclassical solution can be expressed via the isomonodromic \(\tau\)-function. In order to achieve this, we study the confluence cascade of \(r+ 1\) simple poles to give rise to a singularity of arbitrary Poincaré rank \(r\) as a Poisson morphism and explicitly compute the isomonodromic Hamiltonians.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Current algebra ; Differential equations ; Mathematical analysis ; Poles ; Riemann manifold</subject><ispartof>arXiv.org, 2022-12</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Gaiur, Ilia</creatorcontrib><creatorcontrib>Mazzocco, Marta</creatorcontrib><creatorcontrib>Rubtsov, Vladimir</creatorcontrib><title>Isomonodromic deformations: Confluence, Reduction \(\&\) Quantisation</title><title>arXiv.org</title><description>In this paper we study the isomonodromic deformations of systems of differential equations with poles of any order on the Riemann sphere as Hamiltonian flows on the product of co-adjoint orbits of the Takiff algebra (i.e. truncated current algebra). Our motivation is to produce confluent versions of the celebrated Knizhnik--Zamolodchikov equations and explain how their quasiclassical solution can be expressed via the isomonodromic \(\tau\)-function. In order to achieve this, we study the confluence cascade of \(r+ 1\) simple poles to give rise to a singularity of arbitrary Poincaré rank \(r\) as a Poisson morphism and explicitly compute the isomonodromic Hamiltonians.</description><subject>Current algebra</subject><subject>Differential equations</subject><subject>Mathematical analysis</subject><subject>Poles</subject><subject>Riemann manifold</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNit0KgjAYQEcQJOU7DIIoSFjfXKtuxahLo0tBRCcouq_2uffvhx6gqwPnnAkLQMpddIgBZiwk6oQQsNeglAxYeiUc0GLtcGgrXpsG3VCOLVo68QRt03tjK7PlN1P76uN5vs5X-YZnvrRjS993waZN2ZMJf5yz5Tm9J5fo4fDpDY1Fh97ZdypAxUprdQQt_7tehMA64Q</recordid><startdate>20221212</startdate><enddate>20221212</enddate><creator>Gaiur, Ilia</creator><creator>Mazzocco, Marta</creator><creator>Rubtsov, Vladimir</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221212</creationdate><title>Isomonodromic deformations: Confluence, Reduction \(\&\) Quantisation</title><author>Gaiur, Ilia ; Mazzocco, Marta ; Rubtsov, Vladimir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25457759273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Current algebra</topic><topic>Differential equations</topic><topic>Mathematical analysis</topic><topic>Poles</topic><topic>Riemann manifold</topic><toplevel>online_resources</toplevel><creatorcontrib>Gaiur, Ilia</creatorcontrib><creatorcontrib>Mazzocco, Marta</creatorcontrib><creatorcontrib>Rubtsov, Vladimir</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaiur, Ilia</au><au>Mazzocco, Marta</au><au>Rubtsov, Vladimir</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Isomonodromic deformations: Confluence, Reduction \(\&\) Quantisation</atitle><jtitle>arXiv.org</jtitle><date>2022-12-12</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>In this paper we study the isomonodromic deformations of systems of differential equations with poles of any order on the Riemann sphere as Hamiltonian flows on the product of co-adjoint orbits of the Takiff algebra (i.e. truncated current algebra). Our motivation is to produce confluent versions of the celebrated Knizhnik--Zamolodchikov equations and explain how their quasiclassical solution can be expressed via the isomonodromic \(\tau\)-function. In order to achieve this, we study the confluence cascade of \(r+ 1\) simple poles to give rise to a singularity of arbitrary Poincaré rank \(r\) as a Poisson morphism and explicitly compute the isomonodromic Hamiltonians.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2545775927 |
source | Free E- Journals |
subjects | Current algebra Differential equations Mathematical analysis Poles Riemann manifold |
title | Isomonodromic deformations: Confluence, Reduction \(\&\) Quantisation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T16%3A04%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Isomonodromic%20deformations:%20Confluence,%20Reduction%20%5C(%5C&%5C)%20Quantisation&rft.jtitle=arXiv.org&rft.au=Gaiur,%20Ilia&rft.date=2022-12-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2545775927%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2545775927&rft_id=info:pmid/&rfr_iscdi=true |