Isomonodromic deformations: Confluence, Reduction \(\&\) Quantisation

In this paper we study the isomonodromic deformations of systems of differential equations with poles of any order on the Riemann sphere as Hamiltonian flows on the product of co-adjoint orbits of the Takiff algebra (i.e. truncated current algebra). Our motivation is to produce confluent versions of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-12
Hauptverfasser: Gaiur, Ilia, Mazzocco, Marta, Rubtsov, Vladimir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Gaiur, Ilia
Mazzocco, Marta
Rubtsov, Vladimir
description In this paper we study the isomonodromic deformations of systems of differential equations with poles of any order on the Riemann sphere as Hamiltonian flows on the product of co-adjoint orbits of the Takiff algebra (i.e. truncated current algebra). Our motivation is to produce confluent versions of the celebrated Knizhnik--Zamolodchikov equations and explain how their quasiclassical solution can be expressed via the isomonodromic \(\tau\)-function. In order to achieve this, we study the confluence cascade of \(r+ 1\) simple poles to give rise to a singularity of arbitrary Poincaré rank \(r\) as a Poisson morphism and explicitly compute the isomonodromic Hamiltonians.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2545775927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2545775927</sourcerecordid><originalsourceid>FETCH-proquest_journals_25457759273</originalsourceid><addsrcrecordid>eNqNit0KgjAYQEcQJOU7DIIoSFjfXKtuxahLo0tBRCcouq_2uffvhx6gqwPnnAkLQMpddIgBZiwk6oQQsNeglAxYeiUc0GLtcGgrXpsG3VCOLVo68QRt03tjK7PlN1P76uN5vs5X-YZnvrRjS993waZN2ZMJf5yz5Tm9J5fo4fDpDY1Fh97ZdypAxUprdQQt_7tehMA64Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2545775927</pqid></control><display><type>article</type><title>Isomonodromic deformations: Confluence, Reduction \(\&amp;\) Quantisation</title><source>Free E- Journals</source><creator>Gaiur, Ilia ; Mazzocco, Marta ; Rubtsov, Vladimir</creator><creatorcontrib>Gaiur, Ilia ; Mazzocco, Marta ; Rubtsov, Vladimir</creatorcontrib><description>In this paper we study the isomonodromic deformations of systems of differential equations with poles of any order on the Riemann sphere as Hamiltonian flows on the product of co-adjoint orbits of the Takiff algebra (i.e. truncated current algebra). Our motivation is to produce confluent versions of the celebrated Knizhnik--Zamolodchikov equations and explain how their quasiclassical solution can be expressed via the isomonodromic \(\tau\)-function. In order to achieve this, we study the confluence cascade of \(r+ 1\) simple poles to give rise to a singularity of arbitrary Poincaré rank \(r\) as a Poisson morphism and explicitly compute the isomonodromic Hamiltonians.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Current algebra ; Differential equations ; Mathematical analysis ; Poles ; Riemann manifold</subject><ispartof>arXiv.org, 2022-12</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Gaiur, Ilia</creatorcontrib><creatorcontrib>Mazzocco, Marta</creatorcontrib><creatorcontrib>Rubtsov, Vladimir</creatorcontrib><title>Isomonodromic deformations: Confluence, Reduction \(\&amp;\) Quantisation</title><title>arXiv.org</title><description>In this paper we study the isomonodromic deformations of systems of differential equations with poles of any order on the Riemann sphere as Hamiltonian flows on the product of co-adjoint orbits of the Takiff algebra (i.e. truncated current algebra). Our motivation is to produce confluent versions of the celebrated Knizhnik--Zamolodchikov equations and explain how their quasiclassical solution can be expressed via the isomonodromic \(\tau\)-function. In order to achieve this, we study the confluence cascade of \(r+ 1\) simple poles to give rise to a singularity of arbitrary Poincaré rank \(r\) as a Poisson morphism and explicitly compute the isomonodromic Hamiltonians.</description><subject>Current algebra</subject><subject>Differential equations</subject><subject>Mathematical analysis</subject><subject>Poles</subject><subject>Riemann manifold</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNit0KgjAYQEcQJOU7DIIoSFjfXKtuxahLo0tBRCcouq_2uffvhx6gqwPnnAkLQMpddIgBZiwk6oQQsNeglAxYeiUc0GLtcGgrXpsG3VCOLVo68QRt03tjK7PlN1P76uN5vs5X-YZnvrRjS993waZN2ZMJf5yz5Tm9J5fo4fDpDY1Fh97ZdypAxUprdQQt_7tehMA64Q</recordid><startdate>20221212</startdate><enddate>20221212</enddate><creator>Gaiur, Ilia</creator><creator>Mazzocco, Marta</creator><creator>Rubtsov, Vladimir</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221212</creationdate><title>Isomonodromic deformations: Confluence, Reduction \(\&amp;\) Quantisation</title><author>Gaiur, Ilia ; Mazzocco, Marta ; Rubtsov, Vladimir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25457759273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Current algebra</topic><topic>Differential equations</topic><topic>Mathematical analysis</topic><topic>Poles</topic><topic>Riemann manifold</topic><toplevel>online_resources</toplevel><creatorcontrib>Gaiur, Ilia</creatorcontrib><creatorcontrib>Mazzocco, Marta</creatorcontrib><creatorcontrib>Rubtsov, Vladimir</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaiur, Ilia</au><au>Mazzocco, Marta</au><au>Rubtsov, Vladimir</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Isomonodromic deformations: Confluence, Reduction \(\&amp;\) Quantisation</atitle><jtitle>arXiv.org</jtitle><date>2022-12-12</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>In this paper we study the isomonodromic deformations of systems of differential equations with poles of any order on the Riemann sphere as Hamiltonian flows on the product of co-adjoint orbits of the Takiff algebra (i.e. truncated current algebra). Our motivation is to produce confluent versions of the celebrated Knizhnik--Zamolodchikov equations and explain how their quasiclassical solution can be expressed via the isomonodromic \(\tau\)-function. In order to achieve this, we study the confluence cascade of \(r+ 1\) simple poles to give rise to a singularity of arbitrary Poincaré rank \(r\) as a Poisson morphism and explicitly compute the isomonodromic Hamiltonians.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2545775927
source Free E- Journals
subjects Current algebra
Differential equations
Mathematical analysis
Poles
Riemann manifold
title Isomonodromic deformations: Confluence, Reduction \(\&\) Quantisation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T16%3A04%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Isomonodromic%20deformations:%20Confluence,%20Reduction%20%5C(%5C&%5C)%20Quantisation&rft.jtitle=arXiv.org&rft.au=Gaiur,%20Ilia&rft.date=2022-12-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2545775927%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2545775927&rft_id=info:pmid/&rfr_iscdi=true