Isomonodromic deformations: Confluence, Reduction \(\&\) Quantisation

In this paper we study the isomonodromic deformations of systems of differential equations with poles of any order on the Riemann sphere as Hamiltonian flows on the product of co-adjoint orbits of the Takiff algebra (i.e. truncated current algebra). Our motivation is to produce confluent versions of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-12
Hauptverfasser: Gaiur, Ilia, Mazzocco, Marta, Rubtsov, Vladimir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we study the isomonodromic deformations of systems of differential equations with poles of any order on the Riemann sphere as Hamiltonian flows on the product of co-adjoint orbits of the Takiff algebra (i.e. truncated current algebra). Our motivation is to produce confluent versions of the celebrated Knizhnik--Zamolodchikov equations and explain how their quasiclassical solution can be expressed via the isomonodromic \(\tau\)-function. In order to achieve this, we study the confluence cascade of \(r+ 1\) simple poles to give rise to a singularity of arbitrary Poincaré rank \(r\) as a Poisson morphism and explicitly compute the isomonodromic Hamiltonians.
ISSN:2331-8422