A Novel Fault Diagnosis Method for Motor Bearing Based on DTCWT and AFSO-KELM

Aiming at the defects of wavelet transform-based feature extraction and extreme learning machine-based classification, a novel fault diagnosis method for motor bearing, based on dual tree complex wavelet transform and artificial fish swarm optimization-kernel extreme learning machine (DTCWT-AFSO-KEL...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Shock and vibration 2021, Vol.2021 (1), Article 2108457
Hauptverfasser: Lu, Yan, Li, Peijiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aiming at the defects of wavelet transform-based feature extraction and extreme learning machine-based classification, a novel fault diagnosis method for motor bearing, based on dual tree complex wavelet transform and artificial fish swarm optimization-kernel extreme learning machine (DTCWT-AFSO-KELM), is proposed in this paper. Firstly, the dual tree complex wavelet transform instead of the discrete wavelet transform is used to decompose the motor bearing signal; then, the features with large differentiation of motor-bearing fault are extracted; finally, the states of motor bearing are classified by using artificial fish swarm optimization-kernel extreme learning machine. In order to better prove the superiority of this method, four kinds of state data of motor bearing under the conditions of 0 HP (horsepower) load, 1 HP load, 2 HP load, and 3 HP load are used to test. The experimental results indicate that the diagnosis accuracies of DTCWT-AFSO-KELM are obviously better than those of discrete wavelet transform and artificial fish swarm optimization-kernel extreme learning machine (DWT-AFSO-KELM) or discrete wavelet transform and extreme learning machine (DWT-ELM) under different loads.
ISSN:1070-9622
1875-9203
DOI:10.1155/2021/2108457