Monte Carlo-Based Covariance Matrix of Residuals and Critical Values in Minimum L1-Norm
Robust estimators are often lacking a closed-form expression for the computation of their residual covariance matrix. In fact, it is also a prerequisite to obtain critical values for normalized residuals. We present an approach based on Monte Carlo simulation to compute the residual covariance matri...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2021, Vol.2021, p.1-9 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Robust estimators are often lacking a closed-form expression for the computation of their residual covariance matrix. In fact, it is also a prerequisite to obtain critical values for normalized residuals. We present an approach based on Monte Carlo simulation to compute the residual covariance matrix and critical values for robust estimators. Although initially designed for robust estimators, the new approach can be extended for other adjustment procedures. In this sense, the proposal was applied to both well-known minimum L1-norm and least squares into three different leveling network geometries. The results show that (1) the covariance matrix of residuals changes along with the estimator; (2) critical values for minimum L1-norm based on a false positive rate cannot be derived from well-known test distributions; (3) in contrast to critical values for extreme normalized residuals in least squares, critical values for minimum L1-norm do not necessarily tend to be higher as network redundancy increases. |
---|---|
ISSN: | 1024-123X 1563-5147 |
DOI: | 10.1155/2021/8123493 |