Consistent Conjectural Variations Equilibrium in the Semi-Mixed Oligopoly
We study a variant of the mixed oligopoly model with conjectural variations equilibrium, in which one of the producers maximizes not his net profit but the convex combination of the latter with the domestic social surplus. The coefficient of this convex combination is named socialization level. The...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2021-06, Vol.2021, p.1-14 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study a variant of the mixed oligopoly model with conjectural variations equilibrium, in which one of the producers maximizes not his net profit but the convex combination of the latter with the domestic social surplus. The coefficient of this convex combination is named socialization level. The producers’ conjectures concern the price variations depending upon their production output variations. In this work, we extend the models studied before, considering the case of the producers’ cost functions being convex but not necessarily quadratic. The notion of exterior and interior equilibrium is introduced (similarly to previous works), developing a consistency criterion for the conjectures. Existence and uniqueness theorems are formulated and proven. Results concerning the comparison between conjectural variations, perfect competition, and Cournot equilibriums are provided. Based on these results, we formulate an optimality criterion for the election of the socialization level. The existence of the optimal socialization level is proven under the condition that the public company cannot be too weak as compared to the private firms. |
---|---|
ISSN: | 1024-123X 1563-5147 |
DOI: | 10.1155/2021/9997740 |