An inequality for length and volume in the complex projective plane
We prove a new inequality relating volume to length of closed geodesics on area minimizers for generic metrics on the complex projective plane. We exploit recent regularity results for area minimizers by Moore and White, and the Kronheimer–Mrowka proof of the Thom conjecture.
Gespeichert in:
Veröffentlicht in: | Geometriae dedicata 2021-08, Vol.213 (1), p.49-56 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove a new inequality relating volume to length of closed geodesics on area minimizers for generic metrics on the complex projective plane. We exploit recent regularity results for area minimizers by Moore and White, and the Kronheimer–Mrowka proof of the Thom conjecture. |
---|---|
ISSN: | 0046-5755 1572-9168 |
DOI: | 10.1007/s10711-020-00567-x |