Bats: An Appliance Safety Hazards Factors Detection Algorithm with an Improved Nonintrusive Load Disaggregation Method
In an electrical safe microenvironment, all kinds of electrical appliances can be operated safely to ensure the safety of life and property. The significance of safety hazard factors detection is to detect safety hazards in advance, to remind the administrators to exclude risk, to reduce the unneces...
Gespeichert in:
Veröffentlicht in: | Energies (Basel) 2021-06, Vol.14 (12), p.3547, Article 3547 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In an electrical safe microenvironment, all kinds of electrical appliances can be operated safely to ensure the safety of life and property. The significance of safety hazard factors detection is to detect safety hazards in advance, to remind the administrators to exclude risk, to reduce the unnecessary loss, and to ensure that the electrical operation is healthy and orderly before the occurrence of accidents. In this paper, batteries are selected as the primary research subject of safety detection because batteries are used more and more in the Internet of Things (IOT), and they often cause fire in the process of discharging and charging. The existing algorithms need to be embedded into the specialized sensor for each important electrical appliance. However, they are limited by the actual deployment, so it is extremely difficult to spread widely. According to the opinions above, an improved load disaggregation algorithm based on dictionary learning and sparse coding with optimal dictionary matrix period is proposed to detect potential safety hazards of battery loads. For safety-related electrical applications, doing so can increase interpretability. Through experiments, we test this algorithm on the REDD dataset, and compare it with the baseline algorithms (combinatorial optimization, factorial hidden Markov model, basic discriminative dictionary sparse coding algorithm) to achieve a degree of trust. The Mean Absolute Error (MAE) value is 8.26, which drops by 70%. The Root Mean Square Error (RMSE) value is 97.75, which is also better than those baseline algorithms. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en14123547 |