A posteriori error estimates in W1,p × Lp spaces for the Stokes system with Dirac measures

We design and analyze a posteriori error estimators for the Stokes system with singular sources in suitable W1,p×Lp spaces. We consider classical low-order inf-sup stable and stabilized finite element discretizations. We prove, in two and three dimensional Lipschitz, but not necessarily convex polyt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & mathematics with applications (1987) 2021-07, Vol.94, p.47-59
Hauptverfasser: Fuica, Francisco, Lepe, Felipe, Otárola, Enrique, Quero, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We design and analyze a posteriori error estimators for the Stokes system with singular sources in suitable W1,p×Lp spaces. We consider classical low-order inf-sup stable and stabilized finite element discretizations. We prove, in two and three dimensional Lipschitz, but not necessarily convex polytopal domains, that the devised error estimators are reliable and locally efficient. On the basis of the devised error estimators, we design a simple adaptive strategy that yields optimal experimental rates of convergence for the numerical examples that we perform.
ISSN:0898-1221
1873-7668
DOI:10.1016/j.camwa.2021.04.017