Direct Velocity Inversion of Ground Penetrating Radar Data Using GPRNet

Ground penetrating radar (GPR) is used to image the shallow subsurface as evident in earth and planetary exploration. Electromagnetic (EM) velocity (permittivity) models are inverted from GPR data for accurate migration. While conventional velocity analysis methods are designed for multioffset GPR d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Solid earth 2021-06, Vol.126 (6), p.n/a
Hauptverfasser: Leong, Zi Xian, Zhu, Tieyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ground penetrating radar (GPR) is used to image the shallow subsurface as evident in earth and planetary exploration. Electromagnetic (EM) velocity (permittivity) models are inverted from GPR data for accurate migration. While conventional velocity analysis methods are designed for multioffset GPR data, to our knowledge, the velocity analysis for zero‐offset GPR has been underexplored. Inspired by recent deep learning seismic impedance inversion, we propose a deep learning guided technique, GPRNet, that is based on convolutional neural networks to directly learn the intrinsic relationship between GPR data and EM velocity. GPRNet takes in GPR data and outputs the corresponding EM velocity. We simulate numerous GPR data from a range of pseudo‐random velocity models and feed the datasets into GPRNet for training. Each training data set comprises of a pair of one‐dimensional GPR data and EM velocity. During training phase, the neural network's weights are updated iteratively until convergence. This process is analogous to full‐waveform inversion in which the best model is found by iterative optimization until simulated data matches observed data. We test GPRNet on synthetic testing datasets and the predicted velocity models are accurate. A case study is presented where this method is applied on a GPR data collected at the former Wurtsmith Air Force Base in Michigan. The inversion results agree with velocity models established by previous GPR inversion studies of the similar area. We expect the GPRNet open‐source software to be useful in imaging the subsurface for earth and planetary exploration. Plain Language Summary Ground penetrating radar (GPR) is often used to reveal structures beneath the surface. To image the subsurface, velocity models are created from GPR data from a process called inversion. However, inversion is a challenging task for many common GPR systems because they only use a single antenna. Conventionally, velocity inversion is best achieved by using data from multiple antennas. We propose and develop a data driven‐based GPR velocity inversion technique by employing deep learning. Deep learning can find hidden relationships between the inputs and outputs by performing sophisticated approximations over large, interconnected webs of mathematical functions. Similarly, we let the deep learning process “learn” the relationship between GPR data (input) and velocity (output). Using the learned knowledge, we can predict velocity from GPR data. We tes
ISSN:2169-9313
2169-9356
DOI:10.1029/2020JB021047