Adaptive regularization with cubics on manifolds
Adaptive regularization with cubics (ARC) is an algorithm for unconstrained, non-convex optimization. Akin to the trust-region method, its iterations can be thought of as approximate, safe-guarded Newton steps. For cost functions with Lipschitz continuous Hessian, ARC has optimal iteration complexit...
Gespeichert in:
Veröffentlicht in: | Mathematical programming 2021-07, Vol.188 (1), p.85-134 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Adaptive regularization with cubics (ARC) is an algorithm for unconstrained, non-convex optimization. Akin to the trust-region method, its iterations can be thought of as approximate, safe-guarded Newton steps. For cost functions with Lipschitz continuous Hessian, ARC has optimal iteration complexity, in the sense that it produces an iterate with gradient smaller than
ε
in
O
(
1
/
ε
1.5
)
iterations. For the same price, it can also guarantee a Hessian with smallest eigenvalue larger than
-
ε
. In this paper, we study a generalization of ARC to optimization on Riemannian manifolds. In particular, we generalize the iteration complexity results to this richer framework. Our central contribution lies in the identification of appropriate manifold-specific assumptions that allow us to secure these complexity guarantees both when using the exponential map and when using a general retraction. A substantial part of the paper is devoted to studying these assumptions—relevant beyond ARC—and providing user-friendly sufficient conditions for them. Numerical experiments are encouraging. |
---|---|
ISSN: | 0025-5610 1436-4646 |
DOI: | 10.1007/s10107-020-01505-1 |