Strong formulations for conic quadratic optimization with indicator variables

We study the convex hull of the mixed-integer set given by a conic quadratic inequality and indicator variables. Conic quadratic terms are often used to encode uncertainties, while the indicator variables are used to model fixed costs or enforce sparsity in the solutions. We provide the convex hull...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming 2021-07, Vol.188 (1), p.193-226
1. Verfasser: Gómez, Andrés
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the convex hull of the mixed-integer set given by a conic quadratic inequality and indicator variables. Conic quadratic terms are often used to encode uncertainties, while the indicator variables are used to model fixed costs or enforce sparsity in the solutions. We provide the convex hull description of the set under consideration when the continuous variables are unbounded. We propose valid nonlinear inequalities for the bounded case, and show that they describe the convex hull for the two-variable case. All the proposed inequalities are described in the original space of variables, but extended SOCP-representable formulations are also given. We present computational experiments demonstrating the strength of the proposed formulations.
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-020-01508-y