Ebullition Controls on CH4 Emissions in an Urban, Eutrophic River: A Potential Time-Scale Bias in Determining the Aquatic CH4 Flux

Rivers and streams contribute significant quantities of methane (CH4) to the atmosphere. However, there is a lack of CH4 flux and ebullitive (bubble) emission data from urban rivers, which might lead to large underestimations of global aquatic CH4 emissions. Here, we conducted high-frequency surveys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2021-06, Vol.55 (11), p.7287-7298
Hauptverfasser: Chen, Shu, Wang, Dongqi, Ding, Yan, Yu, Zhongjie, Liu, Lijie, Li, Yu, Yang, Dong, Gao, Yingyuan, Tian, Haowen, Cai, Rui, Chen, Zhenlou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Rivers and streams contribute significant quantities of methane (CH4) to the atmosphere. However, there is a lack of CH4 flux and ebullitive (bubble) emission data from urban rivers, which might lead to large underestimations of global aquatic CH4 emissions. Here, we conducted high-frequency surveys using the boundary layer model (BLM) supplemented with floating chambers (FCs) and bubble traps to investigate the seasonal and diurnal variability in CH4 emissions in a eutrophic urban river and to evaluate whether the contribution of bubbles is important. We found that ebullition contributed nearly 99% of CH4 emissions and varied on hourly to seasonal time scales, ranging from 0.83 to 230 mmol m–2 d–1, although diffusive emissions and CH4 concentrations in bubbles did not exhibit temporal variability. Ebullitive CH4 emissions presented high temperature sensitivity (r = 0.6 and p < 0.01) in this urban river, and eutrophication might have triggered this high temperature sensitivity. The ebullitive CH4 flux is more likely to be underestimated at low temperatures because capturing the bubble flux is more difficult, given the low frequency of ebullition events. This study suggests that future ebullition measurements on longer time scales are needed to accurately quantify the CH4 budgets of eutrophic urban rivers.
ISSN:0013-936X
1520-5851
DOI:10.1021/acs.est.1c00114