Data-driven discovery of Koopman eigenfunctions for control
Data-driven transformations that reformulate nonlinear systems in a linear framework have the potential to enable the prediction, estimation, and control of strongly nonlinear dynamics using linear systems theory. The Koopman operator has emerged as a principled linear embedding of nonlinear dynamic...
Gespeichert in:
Veröffentlicht in: | Machine learning: science and technology 2021-09, Vol.2 (3), p.35023 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Data-driven transformations that reformulate nonlinear systems in a linear framework have the potential to enable the prediction, estimation, and control of strongly nonlinear dynamics using linear systems theory. The Koopman operator has emerged as a principled linear embedding of nonlinear dynamics, and its eigenfunctions establish intrinsic coordinates along which the dynamics behave linearly. Previous studies have used finite-dimensional approximations of the Koopman operator for model-predictive control approaches. In this work, we illustrate a fundamental closure issue of this approach and argue that it is beneficial to first validate eigenfunctions and then construct reduced-order models in these validated eigenfunctions. These coordinates form a Koopman-invariant subspace
by design
and, thus, have improved predictive power. We show then how the control can be formulated directly in these intrinsic coordinates and discuss potential benefits and caveats of this perspective. The resulting control architecture is termed
Koopman Reduced Order Nonlinear Identification and Control
(KRONIC). It is further demonstrated that these eigenfunctions can be approximated with data-driven regression and power series expansions, based on the partial differential equation governing the infinitesimal generator of the Koopman operator. Validating discovered eigenfunctions is crucial and we show that lightly damped eigenfunctions may be faithfully extracted from EDMD or an implicit formulation. These lightly damped eigenfunctions are particularly relevant for control, as they correspond to nearly conserved quantities that are associated with persistent dynamics, such as the Hamiltonian. KRONIC is then demonstrated on a number of relevant examples, including (a) a nonlinear system with a known linear embedding, (b) a variety of Hamiltonian systems, and (c) a high-dimensional double-gyre model for ocean mixing. |
---|---|
ISSN: | 2632-2153 2632-2153 |
DOI: | 10.1088/2632-2153/abf0f5 |