Pseudo-Azimuthal Dual-Axis Solar Tracking Technique Using the Hourly Method for Photovoltaic Modules

New technologies to increase the performance of photovoltaic modules are a promising alternative to meet the growing demands for electric energy and the worldwide concern with polluting sources of energy generation. In this sense, several studies focus on extracting the maximum generation of photovo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of control, automation & electrical systems automation & electrical systems, 2021, Vol.32 (4), p.983-991
Hauptverfasser: Miotto, Maicon, Gonzatti, Frank, Franchi, Diogo, da Silva, Emerson I., Farret, Felix A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 991
container_issue 4
container_start_page 983
container_title Journal of control, automation & electrical systems
container_volume 32
creator Miotto, Maicon
Gonzatti, Frank
Franchi, Diogo
da Silva, Emerson I.
Farret, Felix A.
description New technologies to increase the performance of photovoltaic modules are a promising alternative to meet the growing demands for electric energy and the worldwide concern with polluting sources of energy generation. In this sense, several studies focus on extracting the maximum generation of photovoltaic modules with the integration of new installation and manufacturing technologies. Solar tracking is one of the technologies used to increase energy production by PV modules. This technique aims to keep the PV modules perpendicular to the sun’s rays, increasing the incident solar radiation. Currently, solar tracking has several classifications, methodologies and topologies. Particularly, in this article it is evaluated the active, temporal (timetable) solar tracking with a non-azimuthal topology. An equation is presented to define the solar trajectory with the proper mathematical conversion of angles for the pseudo-azimuthal tracker. Based on this model, it is simulated the annual scanning of angles to track the sun position for an experimental non-azimuthal photovoltaic plant. Details of the used control and automation methodologies of this plant are presented using both direct current and induction motors to move the photovoltaic modules. The positioning error of this tracker is close to 0.4° with respect to the reference, which is characterized by a reduced energy consumption (0.2%) with an appreciable increase to generate electrical energy by photovoltaic modules (54.9%) under some well-defined test conditions.
doi_str_mv 10.1007/s40313-021-00721-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2543741826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2543741826</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-2d173c1a0dfd90b5d97043353142ba9fd1826faf19a9d3939b43288396287ee73</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIVKU_wMkSZ4PtTZr4WJVHkVpRifZsubHTpKRxsRPU8vU4BMGNy-6ONDM7GoSuGb1llCZ3PqLAgFDOSIDdPEMDzkRMIBXi_PdO6SUaeb-jlLKUcRbHA6SX3rTakslnuW-bQlX4vlUVmRxLj19tpRxeOZW9lfUWr0xW1OV7a_Dad7gpDJ7Z1lUnvDBNYTXOrcPLwjb2w1aNKjO8sLqtjL9CF7mqvBn97CFaPz6spjMyf3l6nk7mJAMmGsI1SyBjiupcC7qJtUhoBBADi_hGiVyzlI9zlTOhhAYBYhMBT1MQY54mxiQwRDe978HZkNM3chfy1eGl5HEESdQZBBbvWZmz3juTy4Mr98qdJKOyK1T2hcpQqPwuVNIggl7kA7neGvdn_Y_qCwI8d9I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2543741826</pqid></control><display><type>article</type><title>Pseudo-Azimuthal Dual-Axis Solar Tracking Technique Using the Hourly Method for Photovoltaic Modules</title><source>SpringerLink Journals</source><creator>Miotto, Maicon ; Gonzatti, Frank ; Franchi, Diogo ; da Silva, Emerson I. ; Farret, Felix A.</creator><creatorcontrib>Miotto, Maicon ; Gonzatti, Frank ; Franchi, Diogo ; da Silva, Emerson I. ; Farret, Felix A.</creatorcontrib><description>New technologies to increase the performance of photovoltaic modules are a promising alternative to meet the growing demands for electric energy and the worldwide concern with polluting sources of energy generation. In this sense, several studies focus on extracting the maximum generation of photovoltaic modules with the integration of new installation and manufacturing technologies. Solar tracking is one of the technologies used to increase energy production by PV modules. This technique aims to keep the PV modules perpendicular to the sun’s rays, increasing the incident solar radiation. Currently, solar tracking has several classifications, methodologies and topologies. Particularly, in this article it is evaluated the active, temporal (timetable) solar tracking with a non-azimuthal topology. An equation is presented to define the solar trajectory with the proper mathematical conversion of angles for the pseudo-azimuthal tracker. Based on this model, it is simulated the annual scanning of angles to track the sun position for an experimental non-azimuthal photovoltaic plant. Details of the used control and automation methodologies of this plant are presented using both direct current and induction motors to move the photovoltaic modules. The positioning error of this tracker is close to 0.4° with respect to the reference, which is characterized by a reduced energy consumption (0.2%) with an appreciable increase to generate electrical energy by photovoltaic modules (54.9%) under some well-defined test conditions.</description><identifier>ISSN: 2195-3880</identifier><identifier>EISSN: 2195-3899</identifier><identifier>DOI: 10.1007/s40313-021-00721-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Control ; Control and Systems Theory ; Direct current ; Electrical Engineering ; Energy consumption ; Engineering ; Induction motors ; Mechatronics ; Modules ; New technology ; Photovoltaic cells ; Robotics ; Robotics and Automation ; Solar radiation ; Timetables ; Topology ; Tracking</subject><ispartof>Journal of control, automation &amp; electrical systems, 2021, Vol.32 (4), p.983-991</ispartof><rights>Brazilian Society for Automatics--SBA 2021</rights><rights>Brazilian Society for Automatics--SBA 2021.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-2d173c1a0dfd90b5d97043353142ba9fd1826faf19a9d3939b43288396287ee73</citedby><cites>FETCH-LOGICAL-c319t-2d173c1a0dfd90b5d97043353142ba9fd1826faf19a9d3939b43288396287ee73</cites><orcidid>0000-0002-8197-3853</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40313-021-00721-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40313-021-00721-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Miotto, Maicon</creatorcontrib><creatorcontrib>Gonzatti, Frank</creatorcontrib><creatorcontrib>Franchi, Diogo</creatorcontrib><creatorcontrib>da Silva, Emerson I.</creatorcontrib><creatorcontrib>Farret, Felix A.</creatorcontrib><title>Pseudo-Azimuthal Dual-Axis Solar Tracking Technique Using the Hourly Method for Photovoltaic Modules</title><title>Journal of control, automation &amp; electrical systems</title><addtitle>J Control Autom Electr Syst</addtitle><description>New technologies to increase the performance of photovoltaic modules are a promising alternative to meet the growing demands for electric energy and the worldwide concern with polluting sources of energy generation. In this sense, several studies focus on extracting the maximum generation of photovoltaic modules with the integration of new installation and manufacturing technologies. Solar tracking is one of the technologies used to increase energy production by PV modules. This technique aims to keep the PV modules perpendicular to the sun’s rays, increasing the incident solar radiation. Currently, solar tracking has several classifications, methodologies and topologies. Particularly, in this article it is evaluated the active, temporal (timetable) solar tracking with a non-azimuthal topology. An equation is presented to define the solar trajectory with the proper mathematical conversion of angles for the pseudo-azimuthal tracker. Based on this model, it is simulated the annual scanning of angles to track the sun position for an experimental non-azimuthal photovoltaic plant. Details of the used control and automation methodologies of this plant are presented using both direct current and induction motors to move the photovoltaic modules. The positioning error of this tracker is close to 0.4° with respect to the reference, which is characterized by a reduced energy consumption (0.2%) with an appreciable increase to generate electrical energy by photovoltaic modules (54.9%) under some well-defined test conditions.</description><subject>Control</subject><subject>Control and Systems Theory</subject><subject>Direct current</subject><subject>Electrical Engineering</subject><subject>Energy consumption</subject><subject>Engineering</subject><subject>Induction motors</subject><subject>Mechatronics</subject><subject>Modules</subject><subject>New technology</subject><subject>Photovoltaic cells</subject><subject>Robotics</subject><subject>Robotics and Automation</subject><subject>Solar radiation</subject><subject>Timetables</subject><subject>Topology</subject><subject>Tracking</subject><issn>2195-3880</issn><issn>2195-3899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIVKU_wMkSZ4PtTZr4WJVHkVpRifZsubHTpKRxsRPU8vU4BMGNy-6ONDM7GoSuGb1llCZ3PqLAgFDOSIDdPEMDzkRMIBXi_PdO6SUaeb-jlLKUcRbHA6SX3rTakslnuW-bQlX4vlUVmRxLj19tpRxeOZW9lfUWr0xW1OV7a_Dad7gpDJ7Z1lUnvDBNYTXOrcPLwjb2w1aNKjO8sLqtjL9CF7mqvBn97CFaPz6spjMyf3l6nk7mJAMmGsI1SyBjiupcC7qJtUhoBBADi_hGiVyzlI9zlTOhhAYBYhMBT1MQY54mxiQwRDe978HZkNM3chfy1eGl5HEESdQZBBbvWZmz3juTy4Mr98qdJKOyK1T2hcpQqPwuVNIggl7kA7neGvdn_Y_qCwI8d9I</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Miotto, Maicon</creator><creator>Gonzatti, Frank</creator><creator>Franchi, Diogo</creator><creator>da Silva, Emerson I.</creator><creator>Farret, Felix A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8197-3853</orcidid></search><sort><creationdate>2021</creationdate><title>Pseudo-Azimuthal Dual-Axis Solar Tracking Technique Using the Hourly Method for Photovoltaic Modules</title><author>Miotto, Maicon ; Gonzatti, Frank ; Franchi, Diogo ; da Silva, Emerson I. ; Farret, Felix A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-2d173c1a0dfd90b5d97043353142ba9fd1826faf19a9d3939b43288396287ee73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Control</topic><topic>Control and Systems Theory</topic><topic>Direct current</topic><topic>Electrical Engineering</topic><topic>Energy consumption</topic><topic>Engineering</topic><topic>Induction motors</topic><topic>Mechatronics</topic><topic>Modules</topic><topic>New technology</topic><topic>Photovoltaic cells</topic><topic>Robotics</topic><topic>Robotics and Automation</topic><topic>Solar radiation</topic><topic>Timetables</topic><topic>Topology</topic><topic>Tracking</topic><toplevel>online_resources</toplevel><creatorcontrib>Miotto, Maicon</creatorcontrib><creatorcontrib>Gonzatti, Frank</creatorcontrib><creatorcontrib>Franchi, Diogo</creatorcontrib><creatorcontrib>da Silva, Emerson I.</creatorcontrib><creatorcontrib>Farret, Felix A.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of control, automation &amp; electrical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miotto, Maicon</au><au>Gonzatti, Frank</au><au>Franchi, Diogo</au><au>da Silva, Emerson I.</au><au>Farret, Felix A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pseudo-Azimuthal Dual-Axis Solar Tracking Technique Using the Hourly Method for Photovoltaic Modules</atitle><jtitle>Journal of control, automation &amp; electrical systems</jtitle><stitle>J Control Autom Electr Syst</stitle><date>2021</date><risdate>2021</risdate><volume>32</volume><issue>4</issue><spage>983</spage><epage>991</epage><pages>983-991</pages><issn>2195-3880</issn><eissn>2195-3899</eissn><abstract>New technologies to increase the performance of photovoltaic modules are a promising alternative to meet the growing demands for electric energy and the worldwide concern with polluting sources of energy generation. In this sense, several studies focus on extracting the maximum generation of photovoltaic modules with the integration of new installation and manufacturing technologies. Solar tracking is one of the technologies used to increase energy production by PV modules. This technique aims to keep the PV modules perpendicular to the sun’s rays, increasing the incident solar radiation. Currently, solar tracking has several classifications, methodologies and topologies. Particularly, in this article it is evaluated the active, temporal (timetable) solar tracking with a non-azimuthal topology. An equation is presented to define the solar trajectory with the proper mathematical conversion of angles for the pseudo-azimuthal tracker. Based on this model, it is simulated the annual scanning of angles to track the sun position for an experimental non-azimuthal photovoltaic plant. Details of the used control and automation methodologies of this plant are presented using both direct current and induction motors to move the photovoltaic modules. The positioning error of this tracker is close to 0.4° with respect to the reference, which is characterized by a reduced energy consumption (0.2%) with an appreciable increase to generate electrical energy by photovoltaic modules (54.9%) under some well-defined test conditions.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s40313-021-00721-0</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8197-3853</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2195-3880
ispartof Journal of control, automation & electrical systems, 2021, Vol.32 (4), p.983-991
issn 2195-3880
2195-3899
language eng
recordid cdi_proquest_journals_2543741826
source SpringerLink Journals
subjects Control
Control and Systems Theory
Direct current
Electrical Engineering
Energy consumption
Engineering
Induction motors
Mechatronics
Modules
New technology
Photovoltaic cells
Robotics
Robotics and Automation
Solar radiation
Timetables
Topology
Tracking
title Pseudo-Azimuthal Dual-Axis Solar Tracking Technique Using the Hourly Method for Photovoltaic Modules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T04%3A44%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pseudo-Azimuthal%20Dual-Axis%20Solar%20Tracking%20Technique%20Using%20the%20Hourly%20Method%20for%20Photovoltaic%20Modules&rft.jtitle=Journal%20of%20control,%20automation%20&%20electrical%20systems&rft.au=Miotto,%20Maicon&rft.date=2021&rft.volume=32&rft.issue=4&rft.spage=983&rft.epage=991&rft.pages=983-991&rft.issn=2195-3880&rft.eissn=2195-3899&rft_id=info:doi/10.1007/s40313-021-00721-0&rft_dat=%3Cproquest_cross%3E2543741826%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2543741826&rft_id=info:pmid/&rfr_iscdi=true