Rapid Expansion of Northern Peatlands and Doubled Estimate of Carbon Storage
Northern peatlands are an integral part of the global carbon cycle—a strong sink of atmospheric carbon dioxide and source of methane. Increasing anthropogenic carbon dioxide and methane in the atmosphere are thought to strongly impact these environments, and yet, peatlands are not routinely included...
Gespeichert in:
Veröffentlicht in: | Nature geoscience 2019-11, Vol.12 (11), p.917-921 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Northern peatlands are an integral part of the global carbon cycle—a strong sink of atmospheric carbon dioxide and source of methane. Increasing anthropogenic carbon dioxide and methane in the atmosphere are thought to strongly impact these environments, and yet, peatlands are not routinely included in Earth system models. Here we present a quantification of the sink and stock of northern peat carbon from the last glacial period through the pre-industrial period. Additional data and new algorithms for reconstructing the history of peat carbon accumulation and the timing of peatland initiation increased the estimate of total northern peat carbon stocks from 545 Gt to 1,055 Gt of carbon. Further, the post-glacial increases in peatland initiation rate and carbon accumulation rate are more abrupt than previously reported. Peatlands have been a strong carbon sink throughout the Holocene, but the atmospheric partial pressure of carbon dioxide has been relatively stable over this period. While processes such as permafrost thaw and coral reef development probably contributed some additional carbon to the atmosphere, we suggest that deep ocean upwelling was the most important mechanism for balancing the peatland sink and maintaining the observed stability. |
---|---|
ISSN: | 1752-0894 1752-0908 |
DOI: | 10.1038/s41561-019-0454-z |