Updated yields of nitrogenated species in flames of ammonia/benzene via introducing an aniline sub-mechanism
Ammonia and cyclic aromatic compounds are principal products from combustion of various fractions of biomass. Yet, kinetic mechanistic models on formation of NOx from biomass de-couple the oxidation mechanism of ammonia from that of aromatic molecules. Literature kinetic models do not consider a pla...
Gespeichert in:
Veröffentlicht in: | Combustion and flame 2021-06, Vol.228, p.433-442 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ammonia and cyclic aromatic compounds are principal products from combustion of various fractions of biomass. Yet, kinetic mechanistic models on formation of NOx from biomass de-couple the oxidation mechanism of ammonia from that of aromatic molecules. Literature kinetic models do not consider a plausible formation of aniline as the initial product from the interaction of amine radicals and benzene molecules (as the simplest aromatic molecule). Such reaction acts a sink for NH2 radicals, and thus may alter the yields of NOx and HCN. To fill in this gap, this study reports production pathways of aniline from NH2 + benzene reactions, maps out unimolecular decomposition pathways of aniline and its derived anilino radical into, and explores the effect of the title reaction on the yields of small nitrogenated species from co-combustion of ammonia and benzene. We find that anilino radical to preferentially decompose into iso-HNC and a cyclopentadienyl radical. The resonance-stabilized structure of the anilino radical enables it to undergo bimolecular reaction with the aniline molecule to generate N-analogous compounds of dioxins, namely diphenylamine, carbazole, and phenazine. Detail kinetic modeling discloses that decomposition of aniline initiates at 1100 K with ammonia and HCN signify the most abundant N-bearing species at intermediates and high temperatures, respectively. Introducing the newly constructed aniline sub-mechanism in NOx + benzene kinetic model from the literature (i.e., CERCK model) alters predicted concentrations of principal N species within factors of 1.2- 2 between 1100–1300 K. It is hoped that reaction rate constants and mechanistic pathways presented herein to improve the predictive performance of kinetic models that address NOx and HCN emission from flames of ammonia and aromatic-containing fuels in general. |
---|---|
ISSN: | 0010-2180 1556-2921 |
DOI: | 10.1016/j.combustflame.2021.02.011 |