Statistical Inference for the Heteroscedastic Partially Linear Varying-Coefficient Errors-in-Variables Model with Missing Censoring Indicators

In this paper, we focus on heteroscedastic partially linear varying-coefficient errors-in-variables models under right-censored data with censoring indicators missing at random. Based on regression calibration, imputation, and inverse probability weighted methods, we define a class of modified profi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete dynamics in nature and society 2021-06, Vol.2021, p.1-26, Article 1141022
Hauptverfasser: Zou, Yuye, Wu, Chengxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we focus on heteroscedastic partially linear varying-coefficient errors-in-variables models under right-censored data with censoring indicators missing at random. Based on regression calibration, imputation, and inverse probability weighted methods, we define a class of modified profile least square estimators of the parameter and local linear estimators of the coefficient function, which are applied to constructing estimators of the error variance function. In order to improve the estimation accuracy and take into account the heteroscedastic error, reweighted estimators of the parameter and coefficient function are developed. At the same time, we apply the empirical likelihood method to construct confidence regions and maximum empirical likelihood estimators of the parameter. Under appropriate assumptions, the asymptotic normality of the proposed estimators is studied. The strong uniform convergence rate for the estimators of the error variance function is considered. Also, the asymptotic chi-squared distribution of the empirical log-likelihood ratio statistics is proved. A simulation study is conducted to evaluate the finite sample performance of the proposed estimators. Meanwhile, one real data example is provided to illustrate our methods.
ISSN:1026-0226
1607-887X
DOI:10.1155/2021/1141022