On k-tree Containment Graphs of Paths in a Tree

A k -tree is either a complete graph on k vertices or a graph that contains a vertex whose neighborhood induces a complete graph on k vertices and whose removal results in a k -tree. If the comparability graph of a poset P is a k -tree, we say that P is a k -tree poset. In the present work, we study...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Order (Dordrecht) 2021-07, Vol.38 (2), p.229-244
Hauptverfasser: Alcón, Liliana, Gudiño, Noemí, Gutierrez, Marisa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A k -tree is either a complete graph on k vertices or a graph that contains a vertex whose neighborhood induces a complete graph on k vertices and whose removal results in a k -tree. If the comparability graph of a poset P is a k -tree, we say that P is a k -tree poset. In the present work, we study and characterize by forbidden subposets the k -tree posets that admit a containment model mapping vertices into paths of a tree ( CPT k -tree posets). Furthermore, we characterize the dually- CPT and strong- CPT k -tree posets and their comparability graphs. The characterizations lead to efficient recognition algorithms for the respective classes.
ISSN:0167-8094
1572-9273
DOI:10.1007/s11083-020-09536-1