The Bounds for the Number of Linear Extensions Via Chain and Antichain Coverings

Let ( P , ≤ ) be a finite poset. Define the numbers a 1 , a 2 ,… (respectively, c 1 , c 2 ,…) so that a 1 + … + a k (respectively, c 1 + … + c k ) is the maximal number of elements of P which may be covered by k antichains (respectively, k chains.) Then the number e ( P ) of linear extensions of pos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Order (Dordrecht) 2021-07, Vol.38 (2), p.323-328
Hauptverfasser: Bochkov, I. A., Petrov, F. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 328
container_issue 2
container_start_page 323
container_title Order (Dordrecht)
container_volume 38
creator Bochkov, I. A.
Petrov, F. V.
description Let ( P , ≤ ) be a finite poset. Define the numbers a 1 , a 2 ,… (respectively, c 1 , c 2 ,…) so that a 1 + … + a k (respectively, c 1 + … + c k ) is the maximal number of elements of P which may be covered by k antichains (respectively, k chains.) Then the number e ( P ) of linear extensions of poset P is not less than ∏ a i ! and not more than n ! / ∏ c i ! . A corollary: if P is partitioned onto disjoint antichains of sizes b 1 , b 2 ,…, then e ( P ) ≥ ∏ b i ! .
doi_str_mv 10.1007/s11083-020-09542-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2543086124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2543086124</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-65c5969fe3632d91c8aae4e42320a89a8f4903599471dc50d3a2290ee3ad5233</originalsourceid><addsrcrecordid>eNp9kE9LwzAYxoMoOKdfwFPAc_RN3qRtjrPMKQz1MLyG2KauwyUzaUW_vd0qePP08sDzh_dHyCWHaw6Q3yTOoUAGAhhoJQXDIzLhKhdMixyPyQR4lrMCtDwlZyltAAC1yibkebV29Db0vk60CZF2g3zst68u0tDQZeudjXT-1Tmf2uATfWktLde29dT6ms5811YHVYZPF1v_ls7JSWPfk7v4vVOyupuvynu2fFo8lLMlq5DrjmWqUjrTjcMMRa15VVjrpJMCBdhC26KRGlBpLXNeVwpqtEJocA5trQTilFyNtbsYPnqXOrMJffTDohFKIhQZF3JwidFVxZBSdI3ZxXZr47fhYPbgzAjODODMAZzZV-MYSrv9Ry7-Vf-T-gHN527E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2543086124</pqid></control><display><type>article</type><title>The Bounds for the Number of Linear Extensions Via Chain and Antichain Coverings</title><source>SpringerLink Journals</source><creator>Bochkov, I. A. ; Petrov, F. V.</creator><creatorcontrib>Bochkov, I. A. ; Petrov, F. V.</creatorcontrib><description>Let ( P , ≤ ) be a finite poset. Define the numbers a 1 , a 2 ,… (respectively, c 1 , c 2 ,…) so that a 1 + … + a k (respectively, c 1 + … + c k ) is the maximal number of elements of P which may be covered by k antichains (respectively, k chains.) Then the number e ( P ) of linear extensions of poset P is not less than ∏ a i ! and not more than n ! / ∏ c i ! . A corollary: if P is partitioned onto disjoint antichains of sizes b 1 , b 2 ,…, then e ( P ) ≥ ∏ b i ! .</description><identifier>ISSN: 0167-8094</identifier><identifier>EISSN: 1572-9273</identifier><identifier>DOI: 10.1007/s11083-020-09542-3</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algebra ; Chains ; Discrete Mathematics ; Lattices ; Mathematics ; Mathematics and Statistics ; Order ; Ordered Algebraic Structures ; Set theory</subject><ispartof>Order (Dordrecht), 2021-07, Vol.38 (2), p.323-328</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Springer Nature B.V. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-65c5969fe3632d91c8aae4e42320a89a8f4903599471dc50d3a2290ee3ad5233</citedby><cites>FETCH-LOGICAL-c319t-65c5969fe3632d91c8aae4e42320a89a8f4903599471dc50d3a2290ee3ad5233</cites><orcidid>0000-0003-1693-2745</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11083-020-09542-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11083-020-09542-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Bochkov, I. A.</creatorcontrib><creatorcontrib>Petrov, F. V.</creatorcontrib><title>The Bounds for the Number of Linear Extensions Via Chain and Antichain Coverings</title><title>Order (Dordrecht)</title><addtitle>Order</addtitle><description>Let ( P , ≤ ) be a finite poset. Define the numbers a 1 , a 2 ,… (respectively, c 1 , c 2 ,…) so that a 1 + … + a k (respectively, c 1 + … + c k ) is the maximal number of elements of P which may be covered by k antichains (respectively, k chains.) Then the number e ( P ) of linear extensions of poset P is not less than ∏ a i ! and not more than n ! / ∏ c i ! . A corollary: if P is partitioned onto disjoint antichains of sizes b 1 , b 2 ,…, then e ( P ) ≥ ∏ b i ! .</description><subject>Algebra</subject><subject>Chains</subject><subject>Discrete Mathematics</subject><subject>Lattices</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Order</subject><subject>Ordered Algebraic Structures</subject><subject>Set theory</subject><issn>0167-8094</issn><issn>1572-9273</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LwzAYxoMoOKdfwFPAc_RN3qRtjrPMKQz1MLyG2KauwyUzaUW_vd0qePP08sDzh_dHyCWHaw6Q3yTOoUAGAhhoJQXDIzLhKhdMixyPyQR4lrMCtDwlZyltAAC1yibkebV29Db0vk60CZF2g3zst68u0tDQZeudjXT-1Tmf2uATfWktLde29dT6ms5811YHVYZPF1v_ls7JSWPfk7v4vVOyupuvynu2fFo8lLMlq5DrjmWqUjrTjcMMRa15VVjrpJMCBdhC26KRGlBpLXNeVwpqtEJocA5trQTilFyNtbsYPnqXOrMJffTDohFKIhQZF3JwidFVxZBSdI3ZxXZr47fhYPbgzAjODODMAZzZV-MYSrv9Ry7-Vf-T-gHN527E</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Bochkov, I. A.</creator><creator>Petrov, F. V.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1693-2745</orcidid></search><sort><creationdate>20210701</creationdate><title>The Bounds for the Number of Linear Extensions Via Chain and Antichain Coverings</title><author>Bochkov, I. A. ; Petrov, F. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-65c5969fe3632d91c8aae4e42320a89a8f4903599471dc50d3a2290ee3ad5233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Chains</topic><topic>Discrete Mathematics</topic><topic>Lattices</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Order</topic><topic>Ordered Algebraic Structures</topic><topic>Set theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bochkov, I. A.</creatorcontrib><creatorcontrib>Petrov, F. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Order (Dordrecht)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bochkov, I. A.</au><au>Petrov, F. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Bounds for the Number of Linear Extensions Via Chain and Antichain Coverings</atitle><jtitle>Order (Dordrecht)</jtitle><stitle>Order</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>38</volume><issue>2</issue><spage>323</spage><epage>328</epage><pages>323-328</pages><issn>0167-8094</issn><eissn>1572-9273</eissn><abstract>Let ( P , ≤ ) be a finite poset. Define the numbers a 1 , a 2 ,… (respectively, c 1 , c 2 ,…) so that a 1 + … + a k (respectively, c 1 + … + c k ) is the maximal number of elements of P which may be covered by k antichains (respectively, k chains.) Then the number e ( P ) of linear extensions of poset P is not less than ∏ a i ! and not more than n ! / ∏ c i ! . A corollary: if P is partitioned onto disjoint antichains of sizes b 1 , b 2 ,…, then e ( P ) ≥ ∏ b i ! .</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11083-020-09542-3</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-1693-2745</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0167-8094
ispartof Order (Dordrecht), 2021-07, Vol.38 (2), p.323-328
issn 0167-8094
1572-9273
language eng
recordid cdi_proquest_journals_2543086124
source SpringerLink Journals
subjects Algebra
Chains
Discrete Mathematics
Lattices
Mathematics
Mathematics and Statistics
Order
Ordered Algebraic Structures
Set theory
title The Bounds for the Number of Linear Extensions Via Chain and Antichain Coverings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T08%3A57%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Bounds%20for%20the%20Number%20of%20Linear%20Extensions%20Via%20Chain%20and%20Antichain%20Coverings&rft.jtitle=Order%20(Dordrecht)&rft.au=Bochkov,%20I.%20A.&rft.date=2021-07-01&rft.volume=38&rft.issue=2&rft.spage=323&rft.epage=328&rft.pages=323-328&rft.issn=0167-8094&rft.eissn=1572-9273&rft_id=info:doi/10.1007/s11083-020-09542-3&rft_dat=%3Cproquest_cross%3E2543086124%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2543086124&rft_id=info:pmid/&rfr_iscdi=true