The Bounds for the Number of Linear Extensions Via Chain and Antichain Coverings

Let ( P , ≤ ) be a finite poset. Define the numbers a 1 , a 2 ,… (respectively, c 1 , c 2 ,…) so that a 1 + … + a k (respectively, c 1 + … + c k ) is the maximal number of elements of P which may be covered by k antichains (respectively, k chains.) Then the number e ( P ) of linear extensions of pos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Order (Dordrecht) 2021-07, Vol.38 (2), p.323-328
Hauptverfasser: Bochkov, I. A., Petrov, F. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let ( P , ≤ ) be a finite poset. Define the numbers a 1 , a 2 ,… (respectively, c 1 , c 2 ,…) so that a 1 + … + a k (respectively, c 1 + … + c k ) is the maximal number of elements of P which may be covered by k antichains (respectively, k chains.) Then the number e ( P ) of linear extensions of poset P is not less than ∏ a i ! and not more than n ! / ∏ c i ! . A corollary: if P is partitioned onto disjoint antichains of sizes b 1 , b 2 ,…, then e ( P ) ≥ ∏ b i ! .
ISSN:0167-8094
1572-9273
DOI:10.1007/s11083-020-09542-3