The Bounds for the Number of Linear Extensions Via Chain and Antichain Coverings
Let ( P , ≤ ) be a finite poset. Define the numbers a 1 , a 2 ,… (respectively, c 1 , c 2 ,…) so that a 1 + … + a k (respectively, c 1 + … + c k ) is the maximal number of elements of P which may be covered by k antichains (respectively, k chains.) Then the number e ( P ) of linear extensions of pos...
Gespeichert in:
Veröffentlicht in: | Order (Dordrecht) 2021-07, Vol.38 (2), p.323-328 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
(
P
,
≤
)
be a finite poset. Define the numbers
a
1
,
a
2
,… (respectively,
c
1
,
c
2
,…) so that
a
1
+ … +
a
k
(respectively,
c
1
+ … +
c
k
) is the maximal number of elements of
P
which may be covered by
k
antichains (respectively,
k
chains.) Then the number
e
(
P
)
of linear extensions of poset
P
is not less than
∏
a
i
!
and not more than
n
!
/
∏
c
i
!
. A corollary: if
P
is partitioned onto disjoint antichains of sizes
b
1
,
b
2
,…, then
e
(
P
)
≥
∏
b
i
!
. |
---|---|
ISSN: | 0167-8094 1572-9273 |
DOI: | 10.1007/s11083-020-09542-3 |