The Problem of V. N. Dubinin for Symmetric Multiconnected Domains

We consider a quite general problem from the geometric theory of functions, namely, the problem of finding the maximal value of the product of inner radii of n nonoverlapping domains that contain points of the unit circle and are symmetric with respect to this circle and the γ power of the inner rad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ukrainian mathematical journal 2021-04, Vol.72 (11), p.1733-1741
1. Verfasser: Zabolotnii, Ya. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1741
container_issue 11
container_start_page 1733
container_title Ukrainian mathematical journal
container_volume 72
creator Zabolotnii, Ya. V.
description We consider a quite general problem from the geometric theory of functions, namely, the problem of finding the maximal value of the product of inner radii of n nonoverlapping domains that contain points of the unit circle and are symmetric with respect to this circle and the γ power of the inner radius of a domain containing the origin. The posed problem is solved for n ≥ 20 and 1 < γ ≤ n 2 3 − q n .
doi_str_mv 10.1007/s11253-021-01884-4
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2543085897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A682250232</galeid><sourcerecordid>A682250232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-165068647042eb504978c35eeb270fd2e3d297a1e372af7d9550d1f31c5f44543</originalsourceid><addsrcrecordid>eNqNkU1Lw0AQhhdRsFb_gKcFz6mzX9nkWFq_oH6A1euSJrM1pcnW3eTQf-_WCN5E5jAw8z7zDryEXDKYMAB9HRjjSiTAWQIsy2Qij8iIKS2SXOj0mIwAJEtUnqtTchbCBiBimR6R6fID6Yt3qy021Fn6PqFPEzrvV3Vbt9Q6T1_3TYOdr0v62G-7unRti2WHFZ27pqjbcE5ObLENePHTx-Tt9mY5u08Wz3cPs-kiKUWuu4SlCtIslRokx5UCmeusFApxxTXYiqOoeK4LhkLzwuoqVwoqZgUrlZVSSTEmV8PdnXefPYbObFzv22hpeFxDprJcR9VkUK2LLZq6ta7zRRmrwubwO9o6zqdacKFYyuR_gTTjXAGP2JjwASi9C8GjNTtfN4XfGwbmEIYZwjAxDPMdhjm4iAEKUdyu0f8-_wf1BdLgiMs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2543085897</pqid></control><display><type>article</type><title>The Problem of V. N. Dubinin for Symmetric Multiconnected Domains</title><source>Springer Nature - Complete Springer Journals</source><creator>Zabolotnii, Ya. V.</creator><creatorcontrib>Zabolotnii, Ya. V.</creatorcontrib><description>We consider a quite general problem from the geometric theory of functions, namely, the problem of finding the maximal value of the product of inner radii of n nonoverlapping domains that contain points of the unit circle and are symmetric with respect to this circle and the γ power of the inner radius of a domain containing the origin. The posed problem is solved for n ≥ 20 and 1 &lt; γ ≤ n 2 3 − q n .</description><identifier>ISSN: 0041-5995</identifier><identifier>EISSN: 1573-9376</identifier><identifier>DOI: 10.1007/s11253-021-01884-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Analysis ; Applications of Mathematics ; Domains ; Geometry ; Mathematics ; Mathematics and Statistics ; Statistics</subject><ispartof>Ukrainian mathematical journal, 2021-04, Vol.72 (11), p.1733-1741</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-165068647042eb504978c35eeb270fd2e3d297a1e372af7d9550d1f31c5f44543</citedby><cites>FETCH-LOGICAL-c397t-165068647042eb504978c35eeb270fd2e3d297a1e372af7d9550d1f31c5f44543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11253-021-01884-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11253-021-01884-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zabolotnii, Ya. V.</creatorcontrib><title>The Problem of V. N. Dubinin for Symmetric Multiconnected Domains</title><title>Ukrainian mathematical journal</title><addtitle>Ukr Math J</addtitle><description>We consider a quite general problem from the geometric theory of functions, namely, the problem of finding the maximal value of the product of inner radii of n nonoverlapping domains that contain points of the unit circle and are symmetric with respect to this circle and the γ power of the inner radius of a domain containing the origin. The posed problem is solved for n ≥ 20 and 1 &lt; γ ≤ n 2 3 − q n .</description><subject>Algebra</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Domains</subject><subject>Geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Statistics</subject><issn>0041-5995</issn><issn>1573-9376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNkU1Lw0AQhhdRsFb_gKcFz6mzX9nkWFq_oH6A1euSJrM1pcnW3eTQf-_WCN5E5jAw8z7zDryEXDKYMAB9HRjjSiTAWQIsy2Qij8iIKS2SXOj0mIwAJEtUnqtTchbCBiBimR6R6fID6Yt3qy021Fn6PqFPEzrvV3Vbt9Q6T1_3TYOdr0v62G-7unRti2WHFZ27pqjbcE5ObLENePHTx-Tt9mY5u08Wz3cPs-kiKUWuu4SlCtIslRokx5UCmeusFApxxTXYiqOoeK4LhkLzwuoqVwoqZgUrlZVSSTEmV8PdnXefPYbObFzv22hpeFxDprJcR9VkUK2LLZq6ta7zRRmrwubwO9o6zqdacKFYyuR_gTTjXAGP2JjwASi9C8GjNTtfN4XfGwbmEIYZwjAxDPMdhjm4iAEKUdyu0f8-_wf1BdLgiMs</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Zabolotnii, Ya. V.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210401</creationdate><title>The Problem of V. N. Dubinin for Symmetric Multiconnected Domains</title><author>Zabolotnii, Ya. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-165068647042eb504978c35eeb270fd2e3d297a1e372af7d9550d1f31c5f44543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Domains</topic><topic>Geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zabolotnii, Ya. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Ukrainian mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zabolotnii, Ya. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Problem of V. N. Dubinin for Symmetric Multiconnected Domains</atitle><jtitle>Ukrainian mathematical journal</jtitle><stitle>Ukr Math J</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>72</volume><issue>11</issue><spage>1733</spage><epage>1741</epage><pages>1733-1741</pages><issn>0041-5995</issn><eissn>1573-9376</eissn><abstract>We consider a quite general problem from the geometric theory of functions, namely, the problem of finding the maximal value of the product of inner radii of n nonoverlapping domains that contain points of the unit circle and are symmetric with respect to this circle and the γ power of the inner radius of a domain containing the origin. The posed problem is solved for n ≥ 20 and 1 &lt; γ ≤ n 2 3 − q n .</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11253-021-01884-4</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0041-5995
ispartof Ukrainian mathematical journal, 2021-04, Vol.72 (11), p.1733-1741
issn 0041-5995
1573-9376
language eng
recordid cdi_proquest_journals_2543085897
source Springer Nature - Complete Springer Journals
subjects Algebra
Analysis
Applications of Mathematics
Domains
Geometry
Mathematics
Mathematics and Statistics
Statistics
title The Problem of V. N. Dubinin for Symmetric Multiconnected Domains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T10%3A15%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Problem%20of%20V.%20N.%20Dubinin%20for%20Symmetric%20Multiconnected%20Domains&rft.jtitle=Ukrainian%20mathematical%20journal&rft.au=Zabolotnii,%20Ya.%20V.&rft.date=2021-04-01&rft.volume=72&rft.issue=11&rft.spage=1733&rft.epage=1741&rft.pages=1733-1741&rft.issn=0041-5995&rft.eissn=1573-9376&rft_id=info:doi/10.1007/s11253-021-01884-4&rft_dat=%3Cgale_proqu%3EA682250232%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2543085897&rft_id=info:pmid/&rft_galeid=A682250232&rfr_iscdi=true