The Problem of V. N. Dubinin for Symmetric Multiconnected Domains

We consider a quite general problem from the geometric theory of functions, namely, the problem of finding the maximal value of the product of inner radii of n nonoverlapping domains that contain points of the unit circle and are symmetric with respect to this circle and the γ power of the inner rad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ukrainian mathematical journal 2021-04, Vol.72 (11), p.1733-1741
1. Verfasser: Zabolotnii, Ya. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a quite general problem from the geometric theory of functions, namely, the problem of finding the maximal value of the product of inner radii of n nonoverlapping domains that contain points of the unit circle and are symmetric with respect to this circle and the γ power of the inner radius of a domain containing the origin. The posed problem is solved for n ≥ 20 and 1 < γ ≤ n 2 3 − q n .
ISSN:0041-5995
1573-9376
DOI:10.1007/s11253-021-01884-4