The generation of Tollmien–Schlichting waves by free-stream turbulence in transonic flow
This paper studies the generation of Tollmien–Schlichting waves by free-stream turbulence in transonic flow over a half-infinite flat plate with a roughness element using an asymptotic approach. It is assumed that the Reynolds number (denoted Re) is large, and that the free-stream turbulence is unif...
Gespeichert in:
Veröffentlicht in: | Journal of engineering mathematics 2021-08, Vol.129 (1), Article 1 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper studies the generation of Tollmien–Schlichting waves by free-stream turbulence in transonic flow over a half-infinite flat plate with a roughness element using an asymptotic approach. It is assumed that the Reynolds number (denoted Re) is large, and that the free-stream turbulence is uniform so it can be modelled as vorticity waves. Close to the plate, a Blasius boundary layer forms at a thickness of
O
(
Re
-
1
/
2
)
, and a vorticity deformation layer is also present with thickness
O
(
Re
-
1
/
4
)
. The report shows that there is no mechanism by which the vorticity waves can penetrate from the vorticity deformation layer into the classical boundary layer; therefore, a transitional layer is introduced between them in order to prevent a discontinuity in vorticity. The flow in the interaction region in the vicinity of the roughness element is then analysed using the triple-deck model for transonic flow. A novel asymptotic expansion is used to analyse the upper deck, which enables a viscous–inviscid interaction problem to be derived. In order to make analytical progress, the height of the roughness element is assumed to be small, and from this, we find an explicit formula for the receptivity coefficient of the Tollmien–Schlichting wave far downstream of the roughness. |
---|---|
ISSN: | 0022-0833 1573-2703 |
DOI: | 10.1007/s10665-021-10138-y |