Asymptotics of the Spectrum of an Integro-Differential Equation Arising in the Study of the Flutter of a Viscoelastic Plate
In the paper, the asymptotics for the spectrum of the symbol of the oscillation equation of a viscoelastic plate in a liquid or gas flow is studied using operator analysis methods. This equation is the Gurtin–Pipkin equation with a relatively compact perturbation. Using an operator analog of Rouche’...
Gespeichert in:
Veröffentlicht in: | Russian journal of mathematical physics 2021-04, Vol.28 (2), p.188-197 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the paper, the asymptotics for the spectrum of the symbol of the oscillation equation of a viscoelastic plate in a liquid or gas flow is studied using operator analysis methods. This equation is the Gurtin–Pipkin equation with a relatively compact perturbation. Using an operator analog of Rouche’s theorem, we explicitly define an asymptotic representation of nonreal points of the spectrum for the symbol of the equation.
DOI 10.1134/S1061920821020059 |
---|---|
ISSN: | 1061-9208 1555-6638 |
DOI: | 10.1134/S1061920821020059 |