Asymptotics of the Spectrum of an Integro-Differential Equation Arising in the Study of the Flutter of a Viscoelastic Plate

In the paper, the asymptotics for the spectrum of the symbol of the oscillation equation of a viscoelastic plate in a liquid or gas flow is studied using operator analysis methods. This equation is the Gurtin–Pipkin equation with a relatively compact perturbation. Using an operator analog of Rouche’...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian journal of mathematical physics 2021-04, Vol.28 (2), p.188-197
1. Verfasser: Davydov, A. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the paper, the asymptotics for the spectrum of the symbol of the oscillation equation of a viscoelastic plate in a liquid or gas flow is studied using operator analysis methods. This equation is the Gurtin–Pipkin equation with a relatively compact perturbation. Using an operator analog of Rouche’s theorem, we explicitly define an asymptotic representation of nonreal points of the spectrum for the symbol of the equation. DOI 10.1134/S1061920821020059
ISSN:1061-9208
1555-6638
DOI:10.1134/S1061920821020059