Bottlenecks, Shockwave, and Off-Ramp Blockage on Freeways

Freeway congestion may spill back for several kilometers, blocking a number of on/off-ramps upstream. As a consequence, flows at the off-ramps may be substantially reduced, and vehicles bound for the off-ramps are trapped in the mainstream congestion, causing intensified spillback of congestion that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2019-09, Vol.11 (18), p.4991
Hauptverfasser: Guo, Jingqiu, Chen, Xinyao, Pang, Yuqi, Wang, Yibing, Zheng, Pengjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Freeway congestion may spill back for several kilometers, blocking a number of on/off-ramps upstream. As a consequence, flows at the off-ramps may be substantially reduced, and vehicles bound for the off-ramps are trapped in the mainstream congestion, causing intensified spillback of congestion that blocks even more off-ramps further upstream. Such off-ramp blockage is readily understood and its impact is empirically recognized, but there is a lack of analysis to provide more insights. In this paper, some flow conditions for the activation of bottlenecks and congestion propagation are first established, and the mechanism of the off-ramp blockage is theoretically explored. Macroscopic and microscopic simulations are conducted to demonstrate the analytical results, and some general relations between the total demand, total inflow, total off-ramp outflow, and the number of vehicles within a freeway system are examined.
ISSN:2071-1050
2071-1050
DOI:10.3390/su11184991