Detecting botnet signals using process mining

Detecting and elucidating botnets is an active area of research. Using explainable, highly scalable Apache Spark-based artificial intelligence, process mining technologies are presented which illuminate bot activity within terrorist Twitter data. A derived hidden Markov model suggests that bot logic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational and mathematical organization theory 2021-06, Vol.27 (2), p.161-178
Hauptverfasser: Bicknell, John W., Krebs, Werner G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Detecting and elucidating botnets is an active area of research. Using explainable, highly scalable Apache Spark-based artificial intelligence, process mining technologies are presented which illuminate bot activity within terrorist Twitter data. A derived hidden Markov model suggests that bot logic uses information camouflage in order to disguise intentions similar to World War II Nazi propagandists and Soviet-era practitioners of information warfare enhanced with reflexive control. A future effort is presented which strings together best of breed techniques into a composite classification algorithm in order to improve continually the discovery of malicious accounts, understand cross-platform weaponized botnet dynamics, and model adversarial information warfare campaigns recursively.
ISSN:1381-298X
1572-9346
DOI:10.1007/s10588-020-09320-x