On some extremal position problems for graphs

The general position number of a graph \(G\) is the size of the largest set of vertices \(S\) such that no geodesic of \(G\) contains more than two elements of \(S\). The monophonic position number of a graph is defined similarly, but with `induced path' in place of `geodesic'. In this pap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-02
Hauptverfasser: Tuite, James, Elias John Thomas, Ullas, Chandran S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The general position number of a graph \(G\) is the size of the largest set of vertices \(S\) such that no geodesic of \(G\) contains more than two elements of \(S\). The monophonic position number of a graph is defined similarly, but with `induced path' in place of `geodesic'. In this paper we investigate some extremal problems for these parameters. Firstly we discuss the problem of the smallest possible order of a graph with given general and monophonic position numbers. We then determine the asymptotic order of the largest size of a graph with given general or monophonic position number, classifying the extremal graphs with monophonic position number two. Finally we establish the possible diameters of graphs with given order and monophonic position number.
ISSN:2331-8422