Fuel Reactivity Controlled Compression Ignition (RCCI) Combustion in Light- and Heavy-Duty Engines
Single cylinder engine experiments were used to investigate a fuel reactivity controlled compression ignition (RCCI) concept in both light- and heavy-duty engines and comparisons were made between the two engine classes. It was found that with only small changes in the injection parameters, the comb...
Gespeichert in:
Veröffentlicht in: | SAE International journal of engines 2011-01, Vol.4 (1), p.360-374, Article 2011-01-0357 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Single cylinder engine experiments were used to investigate a fuel reactivity controlled compression ignition (RCCI) concept in both light- and heavy-duty engines and comparisons were made between the two engine classes. It was found that with only small changes in the injection parameters, the combustion characteristics of the heavy-duty engine could be adequately reproduced in the light-duty engine. Comparisons of the emissions and performance showed that both engines can simultaneously achieve NOx below 0.05 g/kW-hr, soot below 0.01 g/kW-hr, ringing intensity below 4 MW/m², and gross indicated efficiencies above 50 per cent. However, it was found that the peak gross indicated efficiency of the baseline light-duty engine was approximately 7 per cent lower than the heavy-duty engine. The energy balances of the two engines were compared and it was found that the largest factor contributing to the lower efficiency of the light-duty engine was increased heat transfer losses. Detailed CFD modeling was used to explore options to reduce the heat transfer losses of the light-duty engine. It was found that by reducing the swirl ratio from 2.2 to 0.7, increasing the engine speed from 1900 to 2239 rev/min, and improving the combustion chamber geometry, the heat transfer losses in the light-duty engine could be reduced by the equivalent of 2 per cent of the fuel energy. The modeling showed that light duty engine could achieve 53 per cent gross indicated efficiency, while maintaining near zero NOx and soot, and an acceptable ringing intensity. |
---|---|
ISSN: | 1946-3936 1946-3944 1946-3944 |
DOI: | 10.4271/2011-01-0357 |