Lower Cost Automotive Piston from 2124/SiC/25p Metal-Matrix Composite

Engineered materials have made a breakthrough in a quest for materials with a combination of custom-made properties to suit particular applications. One of such materials is 2124/SiC/25p, a high-quality aerospace grade aluminium alloy reinforced with ultrafine particles of silicon carbide, manufactu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SAE International journal of engines 2017-10, Vol.10 (4), p.1984-1992, Article 2017-01-1048
Hauptverfasser: Falsafi, Javad, Rosochowska, Malgorzata, Jadhav, Prashant, Tricker, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Engineered materials have made a breakthrough in a quest for materials with a combination of custom-made properties to suit particular applications. One of such materials is 2124/SiC/25p, a high-quality aerospace grade aluminium alloy reinforced with ultrafine particles of silicon carbide, manufactured by a powder metallurgy route. This aluminium matrix composite offers a combination of greater fatigue strength at elevated temperatures, lower thermal expansion and greater wear resistance in comparison with conventionally used piston materials. The microscale particulate reinforcement also offers good formability and machinability. Despite the benefits, the higher manufacturing cost often limits their usage in high-volume industries such as automotive where such materials could significantly improve the engine performance. This paper presents mechanical and forging data for a lower cost processing route for metal matrix composites. Finite element modelling and analysis were used to examine forging of an automotive piston and die wear. This showed that selection of the forging route is important to maximise die life. Mechanical testing of the forged material showed a minimal reduction in fatigue properties at the piston operating temperature.
ISSN:1946-3936
1946-3944
1946-3944
DOI:10.4271/2017-01-1048