Coordinated Control of Distributed Traffic Signal Based on Multiagent Cooperative Game

In the adaptive traffic signal control (ATSC), reinforcement learning (RL) is a frontier research hotspot, combined with deep neural networks to further enhance its learning ability. The distributed multiagent RL (MARL) can avoid this kind of problem by observing some areas of each local RL in the c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wireless communications and mobile computing 2021, Vol.2021 (1)
Hauptverfasser: Zhang, Zhenghua, Qian, Jin, Fang, Chongxin, Liu, Guoshu, Su, Quan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the adaptive traffic signal control (ATSC), reinforcement learning (RL) is a frontier research hotspot, combined with deep neural networks to further enhance its learning ability. The distributed multiagent RL (MARL) can avoid this kind of problem by observing some areas of each local RL in the complex plane traffic area. However, due to the limited communication capabilities between each agent, the environment becomes partially visible. This paper proposes multiagent reinforcement learning based on cooperative game (CG-MARL) to design the intersection as an agent structure. The method considers not only the communication and coordination between agents but also the game between agents. Each agent observes its own area to learn the RL strategy and value function, then concentrates the Q function from different agents through a hybrid network, and finally forms its own final Q function in the entire large-scale transportation network. The results show that the proposed method is superior to the traditional control method.
ISSN:1530-8669
1530-8677
DOI:10.1155/2021/6693636