A Menon-type identity concerning Dirichlet characters and a generalization of the gcd function

Menon’s identity is a classical identity involving gcd sums and the Euler totient function ϕ . In a recent paper, Zhao and Cao ( Int. J. Number Theory 13 ( 9 ) (2017) 2373–2379) derived the Menon-type identity ∑ k = 1 n ( k - 1 , n ) χ ( k ) = ϕ ( n ) τ ( n d ) , where χ is a Dirichlet character mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Indian Academy of Sciences. Mathematical sciences 2021-10, Vol.131 (2), Article 18
Hauptverfasser: Chandran, Arya, Namboothiri, K Vishnu, Thomas, Neha Elizabeth
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Menon’s identity is a classical identity involving gcd sums and the Euler totient function ϕ . In a recent paper, Zhao and Cao ( Int. J. Number Theory 13 ( 9 ) (2017) 2373–2379) derived the Menon-type identity ∑ k = 1 n ( k - 1 , n ) χ ( k ) = ϕ ( n ) τ ( n d ) , where χ is a Dirichlet character mod n with conductor d . We derive an identity similar to this replacing gcd with a generalization it. We also show that some of the arguments used in the derivation of Zhao–Cao identity can be improved if one uses the method we employ here.
ISSN:0253-4142
0973-7685
DOI:10.1007/s12044-021-00609-8