A Menon-type identity concerning Dirichlet characters and a generalization of the gcd function
Menon’s identity is a classical identity involving gcd sums and the Euler totient function ϕ . In a recent paper, Zhao and Cao ( Int. J. Number Theory 13 ( 9 ) (2017) 2373–2379) derived the Menon-type identity ∑ k = 1 n ( k - 1 , n ) χ ( k ) = ϕ ( n ) τ ( n d ) , where χ is a Dirichlet character mod...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Indian Academy of Sciences. Mathematical sciences 2021-10, Vol.131 (2), Article 18 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Menon’s identity is a classical identity involving gcd sums and the Euler totient function
ϕ
. In a recent paper, Zhao and Cao (
Int. J. Number Theory
13
(
9
) (2017) 2373–2379) derived the Menon-type identity
∑
k
=
1
n
(
k
-
1
,
n
)
χ
(
k
)
=
ϕ
(
n
)
τ
(
n
d
)
, where
χ
is a Dirichlet character mod
n
with conductor
d
. We derive an identity similar to this replacing gcd with a generalization it. We also show that some of the arguments used in the derivation of Zhao–Cao identity can be improved if one uses the method we employ here. |
---|---|
ISSN: | 0253-4142 0973-7685 |
DOI: | 10.1007/s12044-021-00609-8 |