Stream Network Modeling Using Remote Sensing Data in an Alpine Cold Catchment

The hydrological information derived from a digital elevation model is very important in distributed hydrological modeling. As part of alpine hydrological research on stream network modeling using remote sensing data in the northeast of the Tibetan Plateau, three digital elevation model (DEM) datase...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water (Basel) 2021-06, Vol.13 (11), p.1585
Hauptverfasser: Cao, Hong, Pan, Zhao, Chang, Qixin, Zhou, Aiguo, Wang, Xu, Sun, Ziyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The hydrological information derived from a digital elevation model is very important in distributed hydrological modeling. As part of alpine hydrological research on stream network modeling using remote sensing data in the northeast of the Tibetan Plateau, three digital elevation model (DEM) datasets were obtained for the purpose of hydrological features, mainly including channel network, watershed extent and terrain character. The data sources include the airborne light detection and ranging (LiDAR) with point spacing of 1 m, the High Mountain Asia (HMA) DEM and the Shuttle Radar Topography Mission (SRTM) DEM. Mapping of the watershed and stream network was conducted using each of the three DEM datasets. The modeled stream networks using the different DEMs were verified against the actual network mapped in the field. The results show that the stream network derived from the LiDAR DEM was the most accurate representation of the network mapped in the field. The SRTM DEM overestimated the basin hypsometry relative to the LiDAR watershed at the lowest elevation, while the HMA DEM underestimated the basin hypsometry relative to the LiDAR watershed at the highest elevation. This may be because, compared with the SRTM DEM and the HMA DEM, the LiDAR DEM has higher initial point density, accuracy and resolution. It can be seen that the LiDAR data have great potential for the application in hydrologic modeling and water resource management in small alpine catchments.
ISSN:2073-4441
2073-4441
DOI:10.3390/w13111585