Post-Anthesis Mobilization of Stem Assimilates in Wheat under Induced Stress
Stem reserves in grain crops are considered important in grain filling under post-anthesis stress in the absence/low availability of photosynthetic assimilates. Considerable variation is present among genotypes for stem reserve translocation in wheat. Therefore, this study aimed to exploit the pheno...
Gespeichert in:
Veröffentlicht in: | Sustainability 2021-06, Vol.13 (11), p.5940 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Stem reserves in grain crops are considered important in grain filling under post-anthesis stress in the absence/low availability of photosynthetic assimilates. Considerable variation is present among genotypes for stem reserve translocation in wheat. Therefore, this study aimed to exploit the phenotypic variation for stem reserve translocation in wheat under control and chemically induced stress conditions. The phenotypic variation among six parents and their corresponding direct cross combinations was evaluated under induced stress conditions. The results signify the presence of considerable variation between treatments, genotypes, and treatment-genotype interactions. The parent LLR-20 depicted the highest translocation of dry matter and contribution of post-anthesis assimilates under induced-stress conditions. Similarly, cross combinations Nacozari × LLR22, Nacozari × LLR 20, Nacozari × Parula, Nacozari × LLR 21, LLR 22 × LLR 21, and LLR 20 × LLR 21 showed higher source-sink accumulation under induced-stress conditions. The selected parents and cross combinations can be further utilized in the breeding program to strengthen the genetic basis for stress tolerance in wheat. |
---|---|
ISSN: | 2071-1050 2071-1050 |
DOI: | 10.3390/su13115940 |