Learning Control of Quantum Systems Using Frequency-Domain Optimization Algorithms

We investigate two classes of quantum control problems by using frequency-domain optimization algorithms in the context of ultrafast laser control of quantum systems. In the first class of problems, the system model is known and a frequency-domain gradient-based optimization algorithm is applied for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on control systems technology 2021-07, Vol.29 (4), p.1791-1798
Hauptverfasser: Dong, Daoyi, Shu, Chuan-Cun, Chen, Jiangchao, Xing, Xi, Ma, Hailan, Guo, Yu, Rabitz, Herschel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate two classes of quantum control problems by using frequency-domain optimization algorithms in the context of ultrafast laser control of quantum systems. In the first class of problems, the system model is known and a frequency-domain gradient-based optimization algorithm is applied for searching an optimal control field to selectively and robustly manipulate the population transfer in atomic rubidium. The other class of quantum control problems involves an experimental system with an unknown model. In this case, we introduce a differential evolution algorithm with a mixed strategy to search for optimal control fields and demonstrate the capability in an ultrafast laser control experiment for the fragmentation of Pr(hfac) 3 molecules.
ISSN:1063-6536
1558-0865
DOI:10.1109/TCST.2020.3018500