Development of Spin Fluctuations under the Presence of d -wave Bond Order in Cuprate Superconductors
In cuprate superconductors, superconductivity appears below the CDW transition temperature TCDW. However, many-body electronic states under the CDW order are still far from understood. Here, we study the development of the spin fluctuations under the presence of d-wave bond order (BO) with wavevecto...
Gespeichert in:
Veröffentlicht in: | Journal of the Physical Society of Japan 2021-06, Vol.90 (6), p.63704 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In cuprate superconductors, superconductivity appears below the CDW transition temperature TCDW. However, many-body electronic states under the CDW order are still far from understood. Here, we study the development of the spin fluctuations under the presence of d-wave bond order (BO) with wavevector q=(π/2,0),(0,π/2), which is derived from the paramagnon interference mechanism in recent theoretical studies. Based on the 4 × 1 and 4 × 4 cluster Hubbard models, the feedback effects between spin susceptibility and self-energy are calculated self-consistently by using the fluctuation-exchange (FLEX) approximation. It is found that the d-wave BO leads to a sizable suppression of the nuclear magnetic relaxation rate 1/T1. In contrast, the reduction in Tc is small, since the static susceptibility χs(Qs) is affected by the BO just slightly. It is verified that the d-wave BO scenario is consistent with the experimental electronic properties below TCDW. |
---|---|
ISSN: | 0031-9015 1347-4073 |
DOI: | 10.7566/JPSJ.90.063704 |