The Square Root of a Parabolic Operator
Let L ( t ) = - div A ( x , t ) ∇ x for t ∈ ( 0 , τ ) be a uniformly elliptic operator with boundary conditions on a domain Ω of R d and ∂ = ∂ ∂ t . Define the parabolic operator L = ∂ + L on L 2 ( 0 , τ , L 2 ( Ω ) ) by ( L u ) ( t ) : = ∂ u ( t ) ∂ t + L ( t ) u ( t ) . We assume a very little of...
Gespeichert in:
Veröffentlicht in: | The Journal of fourier analysis and applications 2021-06, Vol.27 (3), Article 59 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
L
(
t
)
=
-
div
A
(
x
,
t
)
∇
x
for
t
∈
(
0
,
τ
)
be a uniformly elliptic operator with boundary conditions on a domain
Ω
of
R
d
and
∂
=
∂
∂
t
. Define the parabolic operator
L
=
∂
+
L
on
L
2
(
0
,
τ
,
L
2
(
Ω
)
)
by
(
L
u
)
(
t
)
:
=
∂
u
(
t
)
∂
t
+
L
(
t
)
u
(
t
)
. We assume a very little of regularity for the boundary of
Ω
and we assume that the coefficients
A
(
x
,
t
) are measurable in
x
and piecewise
C
α
in
t
(uniformly in
x
∈
Ω
) for some
α
>
1
2
. We prove the Kato square root property for
L
and the estimate
‖
L
u
‖
L
2
(
0
,
τ
,
L
2
(
Ω
)
)
≈
‖
∇
x
u
‖
L
2
(
0
,
τ
,
L
2
(
Ω
)
)
+
‖
u
‖
H
1
2
(
0
,
τ
,
L
2
(
Ω
)
)
+
∫
0
τ
‖
u
(
t
)
‖
L
2
(
Ω
)
2
dt
t
1
/
2
.
We also prove
L
p
-versions of this result. |
---|---|
ISSN: | 1069-5869 1531-5851 |
DOI: | 10.1007/s00041-021-09863-w |