A novel economic framework to assess the cost-effectiveness of bone-forming agents in the prevention of fractures in patients with osteoporosis

Summary A novel cost-effectiveness model framework was developed to incorporate the elevated fracture risk associated with a recent fracture and to allow sequential osteoporosis therapies to be evaluated. Treating patients with severe osteoporosis after a recent fracture with a bone-forming agent fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Osteoporosis international 2021-07, Vol.32 (7), p.1301-1311
Hauptverfasser: Söreskog, E., Borgström, F., Lindberg, I., Ström, O., Willems, D., Libanati, C., Kanis, J. A., Stollenwerk, B., Charokopou, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary A novel cost-effectiveness model framework was developed to incorporate the elevated fracture risk associated with a recent fracture and to allow sequential osteoporosis therapies to be evaluated. Treating patients with severe osteoporosis after a recent fracture with a bone-forming agent followed by antiresorptive therapy can be cost-effective compared with antiresorptive therapy alone. Incorporating these novel technical attributes in economic evaluations can support appropriate policy and reimbursement decision-making. Purpose To develop a cost-effectiveness model accommodating increased fracture risk after a recent fracture and treatment sequencing. Methods A micro-simulation cost-utility model was developed to accommodate both treatment sequencing and increased risk with recent fracture. The risk of fracture was estimated and simulated using the FRAX® algorithms combined with Swedish registry data on imminent fracture relative risk. In the base-case cost-effectiveness analysis, a sequential treatment starting with a bone-forming agent for 12 months followed by an antiresorptive agent for 48 months initiated immediately after a major osteoporotic fracture (MOF) in a 70-year-old woman with a T-score of 2.5 or less was compared to an antiresorptive treatment alone for 60 months. The model was populated with data relevant for a UK population reflecting a personal social service perspective. Results The cost per additional quality-adjusted life year (QALY) gained in the base-case setting was estimated at £34,584. Sensitivity analyses revealed the sequential treatment to be cost-saving compared with administering a bone-forming treatment alone. Without simulating an elevated fracture risk immediately after a recent fracture, the cost per QALY changed from £34,584 to £62,184. Conclusion Incorporating imminent fracture risk in economic evaluations has a significant impact on the cost-effectiveness when evaluating fracture prevention treatments in patients with osteoporosis who sustained a recent fracture. Bone-forming treatment followed by antiresorptive therapy can be cost-effective compared to antiresorptive therapy alone depending on treatment acquisition costs.
ISSN:0937-941X
1433-2965
DOI:10.1007/s00198-020-05765-7