Bayesian estimation of the stochastic volatility model with double exponential jumps

This paper generalizes the stochastic volatility model to allow for the double exponential jumps. To derive the jumps and time-varying volatility in returns, we implement an efficient Markov chain Monte Carlo approach based on the band and sparse matrix algorithms used in Chan and Hsiao (SSRN Electr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of derivatives research 2021-07, Vol.24 (2), p.157-172
1. Verfasser: Li, Jinzhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper generalizes the stochastic volatility model to allow for the double exponential jumps. To derive the jumps and time-varying volatility in returns, we implement an efficient Markov chain Monte Carlo approach based on the band and sparse matrix algorithms used in Chan and Hsiao (SSRN Electron J., 2013, https://doi.org/10.2139/ssrn.2359838 ) to estimate this model. We illustrate the the methodology using the daily data for the Shanghai Composite Index, Hangseng Index, Nikkei 225 Index and Kospi Index. We find that the stochastic volatility model with double exponential jumps provide better fitness in sample period.
ISSN:1380-6645
1573-7144
DOI:10.1007/s11147-020-09173-1