Metrics induced by Jensen-Shannon and related divergences on positive definite matrices

We study metric properties of symmetric divergences on Hermitian positive definite matrices. In particular, we prove that the square root of these divergences is a distance metric. As a corollary we obtain a proof of the metric property for Quantum Jensen-Shannon-(Tsallis) divergences (parameterized...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications 2021-05, Vol.616, p.125-138
1. Verfasser: Sra, Suvrit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study metric properties of symmetric divergences on Hermitian positive definite matrices. In particular, we prove that the square root of these divergences is a distance metric. As a corollary we obtain a proof of the metric property for Quantum Jensen-Shannon-(Tsallis) divergences (parameterized by α∈[0,2]). When specialized to α=1, we obtain as a corollary a proof of the metric property of the Quantum Jensen-Shannon divergence that was conjectured by Lamberti et al. (2008) [13], and recently also proved by Virosztek (2019) [28]. A more intricate argument also establishes metric properties of Jensen-Rényi divergences (for α∈(0,1)); this argument develops a technique that may be of independent interest.
ISSN:0024-3795
1873-1856
DOI:10.1016/j.laa.2020.12.023