On extendability of co-edge-regular graphs

Let ℓ denote a non-negative integer. A connected graph Γ of even order at least 2ℓ+2 is ℓ-extendable if it contains a matching of size ℓ and if every such matching is contained in a perfect matching of Γ. A regular graph Γ is co-edge-regular if there exists a constant μ such that any pair of distinc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics 2021-07, Vol.298, p.34-49
Hauptverfasser: Kutnar, Klavdija, Marušič, Dragan, Miklavič, Štefko, Šparl, Primož
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let ℓ denote a non-negative integer. A connected graph Γ of even order at least 2ℓ+2 is ℓ-extendable if it contains a matching of size ℓ and if every such matching is contained in a perfect matching of Γ. A regular graph Γ is co-edge-regular if there exists a constant μ such that any pair of distinct nonadjacent vertices have μ common neighbors. In this paper we classify all 2-extendable and all 3-extendable co-edge-regular graphs of even order. Our results show that the only connected co-edge-regular graph of even order at least 8 and valence at least 7 which is not 3-extendable is the complete multipartite graph K4,4,4.
ISSN:0166-218X
1872-6771
DOI:10.1016/j.dam.2021.03.018