Isotropic enhancement of the thermal conductivity of polymer composites by dispersion of equiaxed polyhedral boron nitride fillers
Recently, hexagonal boron nitride (h-BN) has attracted attention as a high-thermal-conductivity filler for insulating polymers used in electronic devices. However, since the crystal structure of h-BN is analogous to that of graphite, h-BN exhibits a platelet crystalline shape with the anisotropy of...
Gespeichert in:
Veröffentlicht in: | Composites science and technology 2021-05, Vol.208, p.108770, Article 108770 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recently, hexagonal boron nitride (h-BN) has attracted attention as a high-thermal-conductivity filler for insulating polymers used in electronic devices. However, since the crystal structure of h-BN is analogous to that of graphite, h-BN exhibits a platelet crystalline shape with the anisotropy of high thermal conductivity for the in-planar direction and an extremely low thermal conductivity for the trans-planar direction. Consequently, the composites dispersed by conventional h-BN platelets indicated considerably low thermal conductivity in the trans-planar direction owing to the orientation of h-BN platelets. In this study, the anisotropic thermal conductivity was improved by dispersion of equiaxed h-BN fillers. Equiaxed h-BN fillers with spherical polyhedron shape were successfully synthesized through liquid-phase crystal growth by heating an h-BN powder with a rare-earth oxide. The common low thermal conductivity observed for the trans-planar direction was improved in the epoxy composites including equiaxed h-BN fillers, which attained 21.4 Wm−1K−1 corresponding to a six-times-higher thermal conductivity than platelet h-BN filler.
[Display omitted] |
---|---|
ISSN: | 0266-3538 1879-1050 |
DOI: | 10.1016/j.compscitech.2021.108770 |