Liouville Theorem Involving the Uniformly Nonlocal Operator
We prove that u is constant if u is a bounded solution of A α u ( x ) = C n , α P.V. ∫ R n a ( x - y ) ( u ( x ) - u ( y ) ) | x - y | n + α d y = 0 , x ∈ R n , where the function a : R n ↦ R be uniformly bounded and radial decreasing. This result can be regarded as the generalization of usual Liouv...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Malaysian Mathematical Sciences Society 2021-07, Vol.44 (4), p.1893-1903 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that
u
is constant if
u
is a bounded solution of
A
α
u
(
x
)
=
C
n
,
α
P.V.
∫
R
n
a
(
x
-
y
)
(
u
(
x
)
-
u
(
y
)
)
|
x
-
y
|
n
+
α
d
y
=
0
,
x
∈
R
n
,
where the function
a
:
R
n
↦
R
be uniformly bounded and radial decreasing. This result can be regarded as the generalization of usual Liouville theorem. To get the proof, we establish a
maximum principle
involving the nonlocal operator
A
α
for antisymmetric functions on any half space. |
---|---|
ISSN: | 0126-6705 2180-4206 |
DOI: | 10.1007/s40840-020-01039-x |