Liouville Theorem Involving the Uniformly Nonlocal Operator

We prove that u is constant if u is a bounded solution of A α u ( x ) = C n , α P.V. ∫ R n a ( x - y ) ( u ( x ) - u ( y ) ) | x - y | n + α d y = 0 , x ∈ R n , where the function a : R n ↦ R be uniformly bounded and radial decreasing. This result can be regarded as the generalization of usual Liouv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Malaysian Mathematical Sciences Society 2021-07, Vol.44 (4), p.1893-1903
Hauptverfasser: Qu, Meng, Wu, Jiayan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that u is constant if u is a bounded solution of A α u ( x ) = C n , α P.V. ∫ R n a ( x - y ) ( u ( x ) - u ( y ) ) | x - y | n + α d y = 0 , x ∈ R n , where the function a : R n ↦ R be uniformly bounded and radial decreasing. This result can be regarded as the generalization of usual Liouville theorem. To get the proof, we establish a maximum principle involving the nonlocal operator A α for antisymmetric functions on any half space.
ISSN:0126-6705
2180-4206
DOI:10.1007/s40840-020-01039-x