On the Convergence of Time Splitting Methods for Quantum Dynamics in the Semiclassical Regime

By using the pseudo-metric introduced in Golse and Paul (Arch Ration Mech Anal 223:57–94, 2017), which is an analogue of the Wasserstein distance of exponent 2 between a quantum density operator and a classical (phase-space) density, we prove that the convergence of time splitting algorithms for the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Foundations of computational mathematics 2021-06, Vol.21 (3), p.613-647
Hauptverfasser: Golse, François, Jin, Shi, Paul, Thierry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:By using the pseudo-metric introduced in Golse and Paul (Arch Ration Mech Anal 223:57–94, 2017), which is an analogue of the Wasserstein distance of exponent 2 between a quantum density operator and a classical (phase-space) density, we prove that the convergence of time splitting algorithms for the von Neumann equation of quantum dynamics is uniform in the Planck constant ħ . We obtain explicit uniform in ħ error estimates for the first-order Lie–Trotter, and the second-order Strang splitting methods.
ISSN:1615-3375
1615-3383
DOI:10.1007/s10208-020-09470-z