On the Convergence of Time Splitting Methods for Quantum Dynamics in the Semiclassical Regime
By using the pseudo-metric introduced in Golse and Paul (Arch Ration Mech Anal 223:57–94, 2017), which is an analogue of the Wasserstein distance of exponent 2 between a quantum density operator and a classical (phase-space) density, we prove that the convergence of time splitting algorithms for the...
Gespeichert in:
Veröffentlicht in: | Foundations of computational mathematics 2021-06, Vol.21 (3), p.613-647 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | By using the pseudo-metric introduced in Golse and Paul (Arch Ration Mech Anal 223:57–94, 2017), which is an analogue of the Wasserstein distance of exponent 2 between a quantum density operator and a classical (phase-space) density, we prove that the convergence of time splitting algorithms for the von Neumann equation of quantum dynamics is uniform in the Planck constant
ħ
. We obtain explicit uniform in
ħ
error estimates for the first-order Lie–Trotter, and the second-order Strang splitting methods. |
---|---|
ISSN: | 1615-3375 1615-3383 |
DOI: | 10.1007/s10208-020-09470-z |