Local Approximation from Spline Spaces on Box Meshes

This paper analyzes the approximation properties of spaces of piecewise tensor product polynomials over box meshes with a focus on application to isogeometric analysis. Local and global error bounds with respect to Sobolev or reduced seminorms are provided. Attention is also paid to the dependence o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Foundations of computational mathematics 2021-06, Vol.21 (3), p.807-848
Hauptverfasser: Bressan, Andrea, Lyche, Tom
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper analyzes the approximation properties of spaces of piecewise tensor product polynomials over box meshes with a focus on application to isogeometric analysis. Local and global error bounds with respect to Sobolev or reduced seminorms are provided. Attention is also paid to the dependence on the degree, and exponential convergence is proved for the approximation of analytic functions in the absence of non-convex extended supports.
ISSN:1615-3375
1615-3383
DOI:10.1007/s10208-020-09467-8