Local Approximation from Spline Spaces on Box Meshes
This paper analyzes the approximation properties of spaces of piecewise tensor product polynomials over box meshes with a focus on application to isogeometric analysis. Local and global error bounds with respect to Sobolev or reduced seminorms are provided. Attention is also paid to the dependence o...
Gespeichert in:
Veröffentlicht in: | Foundations of computational mathematics 2021-06, Vol.21 (3), p.807-848 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper analyzes the approximation properties of spaces of piecewise tensor product polynomials over box meshes with a focus on application to isogeometric analysis. Local and global error bounds with respect to Sobolev or reduced seminorms are provided. Attention is also paid to the dependence on the degree, and exponential convergence is proved for the approximation of analytic functions in the absence of non-convex extended supports. |
---|---|
ISSN: | 1615-3375 1615-3383 |
DOI: | 10.1007/s10208-020-09467-8 |