Influence of Restrainer Piers on the Seismic Performance of Long Bridges with Equal-Height Piers

Pounding may occur between the main girders under the action of strong earthquakes, so as between main girders and abutments. This causes excessive longitudinal displacement of the main girder and unseating damage to bridges. Because long bridges in mountainous areas with high intensity are easy to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2021, Vol.2021, p.1-23
Hauptverfasser: Luo, Yuhu, Li, Yongguang, Wang, Xu, Lu, Guangping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pounding may occur between the main girders under the action of strong earthquakes, so as between main girders and abutments. This causes excessive longitudinal displacement of the main girder and unseating damage to bridges. Because long bridges in mountainous areas with high intensity are easy to unseat, the authors studied the influence of restrainer piers, expansion joint spacings (EJSs), and the span on the seismic performance of long bridges. The ABAQUS finite element software was used to simulate a bridge dynamic analysis model considering the elastoplasticity of the pounding effect of the pier and the beam. By inputting El-Centro, Northbridge, and Taft seismic waves, the time-history analysis of the seismic response of long bridges was carried out. The results indicated that a reasonable number of restrainer piers, an appropriate EJS, and a span could effectively reduce the maximum relative displacement of pier-beams. This behavior will improve the seismic performance of bridge structures. Moreover, for a 24-span equal-height beam bridge, the optimum seismic effect was obtained when 3 restrainer piers, an EJS of 70 mm, and a 50 m span were used.
ISSN:1024-123X
1563-5147
DOI:10.1155/2021/6651215