An unsplit complex frequency-shifted perfectly matched layer for second-order acoustic wave equations

The perfectly matched layer (PML) boundary condition has been proven to be effective for attenuating reflections from model boundaries during wavefield simulation. As such, it has been widely used in time-domain finite-difference wavefield simulations. The conventional PML has poor performance for n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Earth sciences 2021-06, Vol.64 (6), p.992-1004
Hauptverfasser: Fang, Xiuzheng, Niu, Fenglin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The perfectly matched layer (PML) boundary condition has been proven to be effective for attenuating reflections from model boundaries during wavefield simulation. As such, it has been widely used in time-domain finite-difference wavefield simulations. The conventional PML has poor performance for near grazing incident waves and low-frequency reflections. To overcome these limitations, a more complex frequency-shifted stretch (CSF) function is introduced, which is known as the CFS-PML boundary condition and can be implemented in the time domain by a recursive convolution technique (CPML). When implementing the PML technique to second-order wave equations, all the existing methods involve adding auxiliary terms and rewriting the wave equations into new second-order partial differential equations that can be simulated by the finite-difference scheme, which may affect the efficiency of numerical simulation. In this paper, we propose a relatively simple and efficient approach to implement CPML for the second-order equation system, which solves the original wave equations numerically in the stretched coordinate. The spatial derivatives in the stretched coordinate are computed by adding a correction term to the regular derivatives. Once the first-order spatial derivatives are computed, we computed the second-order spatial derivatives in a similar way; therefore, we refer to the method as two-step CPML (TS-CPML). We apply the method to the second-order acoustic wave equation and a coupled second-order pseudo-acoustic TTI wave equation. Our simulations indicate that amplitudes of reflected waves are only about half of those computed with the traditional CPML method, suggesting that the proposed approach has computational advantages and therefore can be widely used for forwarding modeling and seismic imaging.
ISSN:1674-7313
1869-1897
DOI:10.1007/s11430-021-9784-7