Multi-factor analysis on thermal comfort and energy saving potential for PCM-integrated buildings in summer
The multi-factor orthogonal simulation analysis was initiated to investigate the influence degree of four key parameters of PCM-integrated building envelopes on energy consumption and indoor thermal comfort under Chinese climate. The sensitivity and the interaction between four key parameters on ene...
Gespeichert in:
Veröffentlicht in: | Energy and buildings 2021-06, Vol.241, p.110966, Article 110966 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 110966 |
container_title | Energy and buildings |
container_volume | 241 |
creator | Qu, Y. Zhou, D. Xue, F. Cui, L. |
description | The multi-factor orthogonal simulation analysis was initiated to investigate the influence degree of four key parameters of PCM-integrated building envelopes on energy consumption and indoor thermal comfort under Chinese climate. The sensitivity and the interaction between four key parameters on energy saving and indoor temperature were discussed. The results showed that: 1) According to the influence degree on energy consumption and indoor thermal comfort time, the four key parameters of PCM envelope can be ranked in descending order as follows: envelope type > PCM layer layout > PCM type > PCM layer thickness. 2) The optimal level of all the cases studied is using BioPCMTM23 (PCM2) with a thickness of 7 cm on the inner side of both wall and roof. 3) Integrating the PCM to the envelope can effectively reduce the indoor temperature fluctuation. Considerable energy saving effects (the energy saving rate is 4.8% – 34.8%) can be achieved by properly selecting the PCMs according to local climatic conditions. The PCMs with high latent heat should be selected and placed in an envelope structure that receives longtime solar radiation and has a large surface area, which can maximize the effect of energy saving and temperature control. |
doi_str_mv | 10.1016/j.enbuild.2021.110966 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2537153748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378778821002504</els_id><sourcerecordid>2537153748</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-a65981288dc65db515ecdfa432d0b9a7ecba07eca80d81de5388c02a20f4cac73</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EEqXwCEiWOCfYSRO7J4Qq_qRWcICz5dib4pDYxXYq9e0xpHcOu3vYb1Y7g9A1JTkltL7tcrDNaHqdF6SgOaVkWdcnaEY5K7KaMn6KZqRkPGOM83N0EUJHCKkrRmfoazP20WStVNF5LK3sD8EE7CyOn-AH2WPlhtb5mHYagwW_PeAg98Zu8c5FsNEkJgH4bbXJjI2w9TKCxn8PJSpgY3EYhwH8JTprZR_g6jjn6OPx4X31nK1fn15W9-tMlSWLmayrJacF51rVlW4qWoHSrVyUhSbNUjJQjSSpS040pxqqknNFClmQdqGkYuUc3Ux3d959jxCi6Nzok7UgiqpkNNWCJ6qaKOVdCB5asfNmkP4gKBG_uYpOHHMVv7mKKdeku5t0kCzsDXgRlAGrQBsPKgrtzD8XfgCHmYXv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2537153748</pqid></control><display><type>article</type><title>Multi-factor analysis on thermal comfort and energy saving potential for PCM-integrated buildings in summer</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Qu, Y. ; Zhou, D. ; Xue, F. ; Cui, L.</creator><creatorcontrib>Qu, Y. ; Zhou, D. ; Xue, F. ; Cui, L.</creatorcontrib><description>The multi-factor orthogonal simulation analysis was initiated to investigate the influence degree of four key parameters of PCM-integrated building envelopes on energy consumption and indoor thermal comfort under Chinese climate. The sensitivity and the interaction between four key parameters on energy saving and indoor temperature were discussed. The results showed that: 1) According to the influence degree on energy consumption and indoor thermal comfort time, the four key parameters of PCM envelope can be ranked in descending order as follows: envelope type > PCM layer layout > PCM type > PCM layer thickness. 2) The optimal level of all the cases studied is using BioPCMTM23 (PCM2) with a thickness of 7 cm on the inner side of both wall and roof. 3) Integrating the PCM to the envelope can effectively reduce the indoor temperature fluctuation. Considerable energy saving effects (the energy saving rate is 4.8% – 34.8%) can be achieved by properly selecting the PCMs according to local climatic conditions. The PCMs with high latent heat should be selected and placed in an envelope structure that receives longtime solar radiation and has a large surface area, which can maximize the effect of energy saving and temperature control.</description><identifier>ISSN: 0378-7788</identifier><identifier>EISSN: 1872-6178</identifier><identifier>DOI: 10.1016/j.enbuild.2021.110966</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Building envelopes ; Climatic conditions ; Energy conservation ; Energy consumption ; Energy saving ; Envelope type ; Factor analysis ; Indoor environments ; Indoor temperature ; Latent heat ; Orthogonal simulation analysis ; Parameter sensitivity ; PCM-integrated buildings ; Simulation analysis ; Solar radiation ; Temperature control ; Thermal comfort ; Thickness</subject><ispartof>Energy and buildings, 2021-06, Vol.241, p.110966, Article 110966</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jun 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-a65981288dc65db515ecdfa432d0b9a7ecba07eca80d81de5388c02a20f4cac73</citedby><cites>FETCH-LOGICAL-c337t-a65981288dc65db515ecdfa432d0b9a7ecba07eca80d81de5388c02a20f4cac73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.enbuild.2021.110966$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Qu, Y.</creatorcontrib><creatorcontrib>Zhou, D.</creatorcontrib><creatorcontrib>Xue, F.</creatorcontrib><creatorcontrib>Cui, L.</creatorcontrib><title>Multi-factor analysis on thermal comfort and energy saving potential for PCM-integrated buildings in summer</title><title>Energy and buildings</title><description>The multi-factor orthogonal simulation analysis was initiated to investigate the influence degree of four key parameters of PCM-integrated building envelopes on energy consumption and indoor thermal comfort under Chinese climate. The sensitivity and the interaction between four key parameters on energy saving and indoor temperature were discussed. The results showed that: 1) According to the influence degree on energy consumption and indoor thermal comfort time, the four key parameters of PCM envelope can be ranked in descending order as follows: envelope type > PCM layer layout > PCM type > PCM layer thickness. 2) The optimal level of all the cases studied is using BioPCMTM23 (PCM2) with a thickness of 7 cm on the inner side of both wall and roof. 3) Integrating the PCM to the envelope can effectively reduce the indoor temperature fluctuation. Considerable energy saving effects (the energy saving rate is 4.8% – 34.8%) can be achieved by properly selecting the PCMs according to local climatic conditions. The PCMs with high latent heat should be selected and placed in an envelope structure that receives longtime solar radiation and has a large surface area, which can maximize the effect of energy saving and temperature control.</description><subject>Building envelopes</subject><subject>Climatic conditions</subject><subject>Energy conservation</subject><subject>Energy consumption</subject><subject>Energy saving</subject><subject>Envelope type</subject><subject>Factor analysis</subject><subject>Indoor environments</subject><subject>Indoor temperature</subject><subject>Latent heat</subject><subject>Orthogonal simulation analysis</subject><subject>Parameter sensitivity</subject><subject>PCM-integrated buildings</subject><subject>Simulation analysis</subject><subject>Solar radiation</subject><subject>Temperature control</subject><subject>Thermal comfort</subject><subject>Thickness</subject><issn>0378-7788</issn><issn>1872-6178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhC0EEqXwCEiWOCfYSRO7J4Qq_qRWcICz5dib4pDYxXYq9e0xpHcOu3vYb1Y7g9A1JTkltL7tcrDNaHqdF6SgOaVkWdcnaEY5K7KaMn6KZqRkPGOM83N0EUJHCKkrRmfoazP20WStVNF5LK3sD8EE7CyOn-AH2WPlhtb5mHYagwW_PeAg98Zu8c5FsNEkJgH4bbXJjI2w9TKCxn8PJSpgY3EYhwH8JTprZR_g6jjn6OPx4X31nK1fn15W9-tMlSWLmayrJacF51rVlW4qWoHSrVyUhSbNUjJQjSSpS040pxqqknNFClmQdqGkYuUc3Ux3d959jxCi6Nzok7UgiqpkNNWCJ6qaKOVdCB5asfNmkP4gKBG_uYpOHHMVv7mKKdeku5t0kCzsDXgRlAGrQBsPKgrtzD8XfgCHmYXv</recordid><startdate>20210615</startdate><enddate>20210615</enddate><creator>Qu, Y.</creator><creator>Zhou, D.</creator><creator>Xue, F.</creator><creator>Cui, L.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope></search><sort><creationdate>20210615</creationdate><title>Multi-factor analysis on thermal comfort and energy saving potential for PCM-integrated buildings in summer</title><author>Qu, Y. ; Zhou, D. ; Xue, F. ; Cui, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-a65981288dc65db515ecdfa432d0b9a7ecba07eca80d81de5388c02a20f4cac73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Building envelopes</topic><topic>Climatic conditions</topic><topic>Energy conservation</topic><topic>Energy consumption</topic><topic>Energy saving</topic><topic>Envelope type</topic><topic>Factor analysis</topic><topic>Indoor environments</topic><topic>Indoor temperature</topic><topic>Latent heat</topic><topic>Orthogonal simulation analysis</topic><topic>Parameter sensitivity</topic><topic>PCM-integrated buildings</topic><topic>Simulation analysis</topic><topic>Solar radiation</topic><topic>Temperature control</topic><topic>Thermal comfort</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qu, Y.</creatorcontrib><creatorcontrib>Zhou, D.</creatorcontrib><creatorcontrib>Xue, F.</creatorcontrib><creatorcontrib>Cui, L.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Energy and buildings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qu, Y.</au><au>Zhou, D.</au><au>Xue, F.</au><au>Cui, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-factor analysis on thermal comfort and energy saving potential for PCM-integrated buildings in summer</atitle><jtitle>Energy and buildings</jtitle><date>2021-06-15</date><risdate>2021</risdate><volume>241</volume><spage>110966</spage><pages>110966-</pages><artnum>110966</artnum><issn>0378-7788</issn><eissn>1872-6178</eissn><abstract>The multi-factor orthogonal simulation analysis was initiated to investigate the influence degree of four key parameters of PCM-integrated building envelopes on energy consumption and indoor thermal comfort under Chinese climate. The sensitivity and the interaction between four key parameters on energy saving and indoor temperature were discussed. The results showed that: 1) According to the influence degree on energy consumption and indoor thermal comfort time, the four key parameters of PCM envelope can be ranked in descending order as follows: envelope type > PCM layer layout > PCM type > PCM layer thickness. 2) The optimal level of all the cases studied is using BioPCMTM23 (PCM2) with a thickness of 7 cm on the inner side of both wall and roof. 3) Integrating the PCM to the envelope can effectively reduce the indoor temperature fluctuation. Considerable energy saving effects (the energy saving rate is 4.8% – 34.8%) can be achieved by properly selecting the PCMs according to local climatic conditions. The PCMs with high latent heat should be selected and placed in an envelope structure that receives longtime solar radiation and has a large surface area, which can maximize the effect of energy saving and temperature control.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.enbuild.2021.110966</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-7788 |
ispartof | Energy and buildings, 2021-06, Vol.241, p.110966, Article 110966 |
issn | 0378-7788 1872-6178 |
language | eng |
recordid | cdi_proquest_journals_2537153748 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Building envelopes Climatic conditions Energy conservation Energy consumption Energy saving Envelope type Factor analysis Indoor environments Indoor temperature Latent heat Orthogonal simulation analysis Parameter sensitivity PCM-integrated buildings Simulation analysis Solar radiation Temperature control Thermal comfort Thickness |
title | Multi-factor analysis on thermal comfort and energy saving potential for PCM-integrated buildings in summer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T07%3A04%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-factor%20analysis%20on%20thermal%20comfort%20and%20energy%20saving%20potential%20for%20PCM-integrated%20buildings%20in%20summer&rft.jtitle=Energy%20and%20buildings&rft.au=Qu,%20Y.&rft.date=2021-06-15&rft.volume=241&rft.spage=110966&rft.pages=110966-&rft.artnum=110966&rft.issn=0378-7788&rft.eissn=1872-6178&rft_id=info:doi/10.1016/j.enbuild.2021.110966&rft_dat=%3Cproquest_cross%3E2537153748%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2537153748&rft_id=info:pmid/&rft_els_id=S0378778821002504&rfr_iscdi=true |