Biodegradation pathway of the organophosphate pesticides chlorpyrifos, methyl parathion and profenofos by the marine-derived fungus Aspergillus sydowii CBMAI 935 and its potential for methylation reactions of phenolic compounds

The indiscriminate use of organophosphate pesticides causes serious environmental and human health problems. This study aims the biodegradation of chlorpyrifos, methyl parathion and profenofos with the proposal of new biodegradation pathways employing marine-derived fungi as biocatalysts. Firstly, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Marine pollution bulletin 2021-05, Vol.166, p.112185, Article 112185
Hauptverfasser: Soares, Paulo Roberto S., Birolli, Willian G., Ferreira, Irlon M., Porto, André Luiz M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The indiscriminate use of organophosphate pesticides causes serious environmental and human health problems. This study aims the biodegradation of chlorpyrifos, methyl parathion and profenofos with the proposal of new biodegradation pathways employing marine-derived fungi as biocatalysts. Firstly, a growth screening was carried out with seven fungi strains and Aspergillus sydowii CBMAI 935 was selected. For chlorpyrifos, 32% biodegradation was observed and the metabolites tetraethyl dithiodiphosphate, 3,5,6-trichloropyridin-2-ol, 2,3,5-trichloro-6-methoxypyridine, and 3,5,6-trichloro-1-methylpyridin-2(1H)-one were identified. Whereas 80% methyl parathion was biodegraded with the identification of isoparathion, methyl paraoxon, trimethyl phosphate, O,O,O-trimethyl phosphorothioate, O,O,S-trimethyl phosphorothioate, 1-methoxy-4-nitrobenzene, and 4-nitrophenol. For profenofos, 52% biodegradation was determined and the identified metabolites were 4-bromo-2-chlorophenol, 4-bromo-2-chloro-1-methoxybenzene and O,O-diethyl S-propylphosphorothioate. Moreover, A. sydowii CBMAI 935 methylated different phenolic substrates (phenol, 2-chlorophenol, 6-chloropyridin-3-ol, and pentachlorophenol). Therefore, the knowledge about the fate of these compounds in the sea was expanded, and the marine-derived fungus A. sydowii CBMAI 935 showed potential for biotransformation reactions. [Display omitted] •Biodegradation of organophosphate pesticides and their metabolites was observed.•Biotransformation proceeded by methylation, hydrolysis, and condensation reactions.•Knowledge about the fate of these pesticides in marine environment was expanded.•A. sydowii CBMAI 935 can be a source of methyltransferases and phosphoesterases.•Phenol, 2-chlorophenol, 6-chloropyridin-3-ol, pentachlorophenol were methylated.
ISSN:0025-326X
1879-3363
DOI:10.1016/j.marpolbul.2021.112185