A Review on Encapsulation Technology from Organic Light Emitting Diodes to Organic and Perovskite Solar Cells
Organic light emitting diodes (OLEDs) employing organic thin‐film based emitters have attracted tremendous attention due to their widespread applications in lighting and as displays in mobile devices and televisions. The novel thin‐film photovoltaic techniques using organic or organic–inorganic hybr...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2021-06, Vol.31 (23), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Organic light emitting diodes (OLEDs) employing organic thin‐film based emitters have attracted tremendous attention due to their widespread applications in lighting and as displays in mobile devices and televisions. The novel thin‐film photovoltaic techniques using organic or organic–inorganic hybrid materials such as organic photovoltaics (OPVs) and perovskite solar cells (PSCs) have become emerging competitive candidates with regard to the traditional photovoltaic techniques on account of high‐efficiency, low‐cost, and simple manufacturing processing properties. However, OLEDs, OPVs, and PSCs are vulnerable to the undesired degradation induced by moisture and oxygen. To afford long‐term stability, a robust encapsulation technique by employing materials and structures that possess high barrier performance against oxygen and moisture must be explored and employed to protect these devices. Herein, the recent progress on specific encapsulation materials and techniques for three types of devices on the basis of fundamental understanding of device stability is reviewed. First, their degradation mechanisms, as well as, influencing factors are discussed. Then, the encapsulation technologies and materials are classified and discussed. Moreover, the advantages and disadvantages of various encapsulation technologies and materials coupled with their encapsulation applications in different devices are compared. Finally, the ongoing challenges and future perspectives of encapsulation frontier are provided.
Thin‐film, cover, and hybrid encapsulation technologies, that function as a moisture and oxygen permeation barrier and mechanical protection to prevent leakage of toxic by‐product, and limit decomposition of reactants in a confined space, can be applied in organic light emitting diodes, organic and perovskite solar cells, leading to robust stability and long lifetime in three types of devices. |
---|---|
ISSN: | 1616-301X 1616-3028 |
DOI: | 10.1002/adfm.202100151 |